Created
June 7, 2018 16:50
-
-
Save alessiamarcolini/cb3214f5bc72f15f73579995d02bb318 to your computer and use it in GitHub Desktop.
Snapshot Ensembles - Keras
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_callbacks(self, model_prefix='Model'): | |
""" | |
Creates a list of callbacks that can be used during training to create a | |
snapshot ensemble of the model. | |
Args: | |
model_prefix: prefix for the filename of the weights. | |
Returns: list of 3 callbacks [ModelCheckpoint, LearningRateScheduler, | |
SnapshotModelCheckpoint] which can be provided to the 'fit' function | |
""" | |
if not os.path.exists('weights/'): | |
os.makedirs('weights/') | |
callback_list = [ModelCheckpoint('weights/%s-Best.h5' % model_prefix, monitor='val_acc', | |
save_best_only=True, save_weights_only=True), | |
LearningRateScheduler(schedule=self._cosine_anneal_schedule), | |
SnapshotModelCheckpoint(self.T, self.M, fn_prefix='weights/%s' % model_prefix)] | |
return callback_list | |
def _cosine_anneal_schedule(self, t): | |
cos_inner = np.pi * (t % (self.T // self.M)) | |
cos_inner /= self.T // self.M | |
cos_out = np.cos(cos_inner) + 1 | |
return float(self.alpha_zero / 2 * cos_out) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment