-
-
Save amanuel1995/62391f918d4f57c56edc5900af0ed295 to your computer and use it in GitHub Desktop.
Simple script that parses and returns the output of nvidia-smi
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import commands | |
import numpy as np | |
def fetch_gpu_status(): | |
""" Run nvidia-smi and parse the output | |
requires Python 2 only dependency | |
""" | |
status_code, output = commands.getstatusoutput('nvidia-smi') | |
assert status_code == 0 | |
gpu_records = [] | |
gpu_line = False | |
process_block = False | |
valid_ids = [] | |
for line in output.split('\n'): | |
# if the line looks like this (possibly with a different GPU name) | |
# | 1 TITAN X (Pascal) Off | 0000:03:00.0 Off | N/A | | |
# these two cases cover all of the workstations and the slowpokes currently (3/17) | |
if 'TITAN X' in line or 'GeForce' in line: | |
gpu_line = True | |
gpu_id = int(strip_empty_str(line.split('|')[1].split(' '))[0]) | |
continue | |
# if the line looks like this | |
# | 79% 87C P2 221W / 250W | 2291MiB / 12189MiB | 100% Default | | |
if gpu_line: | |
_, physicals, memory, usage, _ = line.split('|') | |
physicals_tokens = strip_empty_str(physicals.split(' ')) | |
memory_tokens = strip_empty_str(memory.split(' ')) | |
usage_tokens = strip_empty_str(usage.split(' ')) | |
record = { | |
'physicals': { | |
'fan': physicals_tokens[0], | |
'temp': physicals_tokens[1], | |
'power': physicals_tokens[3] | |
}, | |
'memory_frac': float(memory_tokens[0][:-3]) / float(memory_tokens[2][:-3]), | |
'tot_memory': int(memory_tokens[2][:-3]), | |
'usage_frac': float(usage_tokens[0][:-1]) / 100., | |
'id': gpu_id, | |
'processes': [] | |
} | |
gpu_records.append(record) | |
valid_ids.append(gpu_id) | |
gpu_line = False | |
continue | |
# if the line looks like this | |
# | Processes: GPU Memory | | |
if 'Processes:' in line: | |
process_block = True | |
indexed_gpus = {rec['id']: rec for rec in gpu_records} | |
continue | |
# if the line looks like this | |
# | 1 89398 C python 2289MiB |- | |
if process_block: | |
disallowed_lines = ['+----', '| GPU', '|======', '| 0 ', '| No running processes found'] | |
invalid_line = np.asarray([line.startswith(illegal_line) for illegal_line in disallowed_lines]).any() | |
if invalid_line: | |
continue | |
gpu_id, pid, ptype, name, mem_usage = strip_empty_str(strip_empty_str(line.split('|'))[0].split(' ')) | |
gpu_id = int(gpu_id) | |
pid = int(pid) | |
if gpu_id in valid_ids: | |
process_record = { | |
'pid': pid, | |
'type': ptype, | |
'name': name, | |
'mem_frac': float(mem_usage[:-3]) / indexed_gpus[gpu_id]['tot_memory'] | |
} | |
indexed_gpus[gpu_id]['processes'].append(process_record) | |
continue | |
return gpu_records |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment