Created
April 3, 2025 18:41
-
-
Save anadim/e072b7dfceea1eaed10b7274a4d1980a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import math | |
import matplotlib.pyplot as plt | |
import networkx as nx | |
def generate_star_graph_edges(K, N): | |
edges = [] | |
central_node = "C" | |
for i in range(K): | |
prev = central_node | |
for j in range(1, N + 1): | |
node = f"L{i}_{j}" | |
edges.append((prev, node)) | |
prev = node | |
return edges, central_node | |
def random_rename_edges(edges, central_node): | |
nodes = {u for edge in edges for u in edge} | |
random_labels = random.sample(range(1000, 9999), len(nodes)) | |
name_map = dict(zip(nodes, random_labels)) | |
renamed_edges = [(name_map[u], name_map[v]) for u, v in edges] | |
renamed_central = name_map[central_node] | |
return renamed_edges, name_map, renamed_central | |
def radial_layout(name_map, central_node, K, N, radius_step=3.0): | |
pos = {} | |
angle_step = 2 * math.pi / K | |
pos[central_node] = (0, 0) | |
for i in range(K): | |
angle = i * angle_step | |
for j in range(1, N + 1): | |
node_label = f"L{i}_{j}" | |
node = name_map[node_label] | |
r = j * radius_step | |
x = r * math.cos(angle) | |
y = r * math.sin(angle) | |
pos[node] = (x, y) | |
return pos | |
def plot_graph(edges, pos, central_node, target_leaf, title="Star Graph with Target Highlighted"): | |
G = nx.Graph() | |
G.add_edges_from(edges) | |
node_colors = [] | |
for node in G.nodes(): | |
if node == central_node: | |
node_colors.append('orange') | |
elif node == target_leaf: | |
node_colors.append('red') | |
else: | |
node_colors.append('skyblue') | |
plt.figure(figsize=(10, 10)) | |
nx.draw(G, pos, with_labels=True, node_color=node_colors, | |
edge_color='gray', node_size=1000, font_size=10, font_weight='bold') | |
plt.title(title) | |
plt.axis('off') | |
plt.tight_layout() | |
plt.show() | |
def find_path(edges, start, end): | |
G = nx.Graph() | |
G.add_edges_from(edges) | |
try: | |
return nx.shortest_path(G, source=start, target=end) | |
except nx.NetworkXNoPath: | |
return None | |
# Parameters | |
K = 8 | |
N = 10 | |
radius_step = 3.0 | |
# Step 1: Generate and rename | |
original_edges, central_node = generate_star_graph_edges(K, N) | |
renamed_edges, name_map, renamed_central = random_rename_edges(original_edges, central_node) | |
# Step 2: Pick a random leaf node | |
leaf_nodes = [name_map[f"L{i}_{N}"] for i in range(K)] | |
random_leaf = random.choice(leaf_nodes) | |
# Step 3: Layout and plot | |
pos = radial_layout(name_map, renamed_central, K, N, radius_step=radius_step) | |
plot_graph(renamed_edges, pos, central_node=renamed_central, target_leaf=random_leaf) | |
# Step 4: Print prompt and solve | |
print("I will give you the edge list of a star graph and I want you to find a path from the center node to a leaf node") | |
for u, v in renamed_edges: | |
print(f"({u}, {v})") | |
print(f"\nShow me a valid path from {renamed_central} to {random_leaf}:") | |
path = find_path(renamed_edges, renamed_central, random_leaf) | |
if path: | |
print("Valid path found:") | |
print(" -> ".join(str(node) for node in path)) | |
else: | |
print("No path found.") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment