Last active
March 25, 2019 02:38
-
-
Save andrewliao11/fca1627d1529892f4a8396817c8e16fb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import imageio | |
import numpy as np | |
from utils import * | |
mode = 'sgd' # sgd, fisher, or dig_fisher | |
X_train, X_test, t_train, t_test = get_data() | |
W = get_model() | |
alpha = 1 | |
ys = [] | |
ws = [] | |
ls = [] | |
# Training | |
for it in range(15): | |
# Forward | |
z = X_train @ W | |
y = sigm(z) | |
ys.append(y) | |
ws.append(W) | |
loss = NLL(y, t_train) | |
ls.append(loss) | |
# Loss | |
print(f'Loss: {loss:.3f}') | |
m = y.shape[0] | |
if mode == 'sgd': | |
dy = (y-t_train)/(m * (y - y*y)) # dloss/dy | |
dz = sigm(z)*(1-sigm(z)) # dy/dz | |
dW = X_train.T @ (dz * dy) | |
# Step | |
W = W - alpha * dW | |
elif mode == 'fisher': | |
dy = (y-t_train)/(m * (y - y*y)) | |
dz = sigm(z)*(1-sigm(z)) | |
dW = X_train.T @ (dz * dy) | |
dloglik_dy = (t_train-y)/(y - y*y) | |
dloglik_dz = dloglik_dy * dz | |
dloglik_dw = dloglik_dz * X_train | |
F = np.cov(dloglik_dw.T) | |
# Step | |
W = W - alpha * np.linalg.inv(F) @ dW | |
elif mode == 'dig_fisher': | |
dy = (y-t_train)/(m * (y - y*y)) | |
dz = sigm(z)*(1-sigm(z)) | |
dW = X_train.T @ (dz * dy) | |
dloglik_dy = (t_train-y)/(y - y*y) | |
dloglik_dz = dloglik_dy * dz | |
dloglik_dw = dloglik_dz * X_train | |
# Diagonal approx. | |
F = np.mean(dloglik_dw * dloglik_dw, axis=0)[:, None] | |
# Step | |
W = W - alpha * (1/F * dW) | |
else: | |
raise ValueError | |
y = sigm(X_test @ W) | |
acc = get_acc(y, t_test) | |
print(f'Accuracy: {acc:.3f}') | |
dist_imgs = [viz_y(y, '[{}] Iteration {}'.format(mode, it)) for it, y in enumerate(ys)] | |
imageio.mimsave('{}_dist_change.gif'.format(mode), dist_imgs) | |
ylim = [np.stack(ws).min() - 0.5, np.stack(ws).max() + 0.5] | |
w_imgs = [viz_w(w, '[{}] Iteration {}'.format(mode, it), ylim) for it, w in enumerate(ws)] | |
imageio.mimsave('{}_weight_change.gif'.format(mode), w_imgs) | |
viz_loss(ls, '[sgd] loss curve', 'sgd_loss.png') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import imageio | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.utils import shuffle | |
plt.style.use('ggplot') | |
np.random.seed(9999) | |
def get_data(): | |
X0 = np.random.randn(100, 2) - 1 | |
X1 = np.random.randn(100, 2) + 1 | |
X = np.vstack([X0, X1]) | |
t = np.vstack([np.zeros([100, 1]), np.ones([100, 1])]) | |
X, t = shuffle(X, t) | |
X_train, X_test = X[:150], X[150:] | |
t_train, t_test = t[:150], t[150:] | |
return X_train, X_test, t_train, t_test | |
def get_model(): | |
# Model | |
W = np.random.randn(2, 1) * 0.01 | |
return W | |
def get_acc(y, t): | |
acc = np.mean((y.ravel() >= 0.5) == t.ravel()) | |
return acc | |
def sigm(x): | |
return 1/(1+np.exp(-x)) | |
def NLL(y, t): | |
return -np.mean(t*np.log(y) + (1-t)*np.log(1-y)) | |
def viz_y(y, title): | |
fig, ax = plt.subplots() | |
y = y.ravel() | |
ax.set_ylim(0, 1) | |
ax.bar(np.arange(len(y)), y, align='center', alpha=0.5) | |
ax.set_title(title) | |
# grab the pixel buffer and dump it into a numpy array | |
fig.canvas.draw() | |
img = np.array(fig.canvas.renderer._renderer) | |
plt.close() | |
return img | |
def viz_w(w, title, ylim): | |
fig, ax = plt.subplots() | |
w = w.ravel() | |
ax.set_ylim(*ylim) | |
ax.bar(np.arange(len(w)), w, align='center', alpha=0.5) | |
ax.set_title(title) | |
# grab the pixel buffer and dump it into a numpy array | |
fig.canvas.draw() | |
img = np.array(fig.canvas.renderer._renderer) | |
plt.close() | |
return img | |
def viz_loss(ls, title, p): | |
fig, ax = plt.subplots() | |
ax.plot(ls, alpha=0.5) | |
ax.set_title(title) | |
# grab the pixel buffer and dump it into a numpy array | |
fig.canvas.draw() | |
img = np.array(fig.canvas.renderer._renderer) | |
plt.close() | |
imageio.imsave(p, img) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
from https://github.com/wiseodd/natural-gradients