Created
March 1, 2020 15:29
-
-
Save anshumankmr/c15c2f5ad69971ae00ada6909b8cc4d1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
def getTextOverlay(img): | |
pathname = "." | |
output = np.zeros(img.shape, dtype=np.uint8) | |
vis = img.copy() | |
channels = cv2.text.computeNMChannels(img) | |
# Append negative channels to detect ER- (bright regions over dark background) | |
cn = len(channels)-1 | |
for c in range(0,cn): | |
channels.append((255-channels[c])) | |
# Apply the default cascade classifier to each independent channel (could be done in parallel) | |
print("Extracting Class Specific Extremal Regions from "+str(len(channels))+" channels ...") | |
print(" (...) this may take a while (...)") | |
for channel in channels: | |
erc1 = cv2.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml') | |
er1 = cv2.text.createERFilterNM1(erc1,16,0.00015,0.13,0.2,True,0.1) | |
erc2 = cv2.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml') | |
er2 = cv2.text.createERFilterNM2(erc2,0.5) | |
regions = cv2.text.detectRegions(channel,er1,er2) | |
rects = cv2.text.erGrouping(img,channel,[r.tolist() for r in regions]) | |
#Visualization | |
for r in range(0,np.shape(rects)[0]): | |
rect = rects[r] | |
cv2.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2) | |
cv2.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1) | |
output = vis.copy() | |
return output | |
image = cv2.imread('./simpsons_frame0.png') | |
print(type(image)) | |
output = getTextOverlay(image) | |
cv2.imwrite('simpons_text.png', output) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment