Created
November 11, 2021 14:13
-
-
Save aqjune/68cd575594b8e334c2168d3c74ff2432 to your computer and use it in GitHub Desktop.
bufferize-fail.mlir
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map0 = affine_map<(d0, d1) -> (d0, d1)> | |
#map1 = affine_map<(d0) -> (d0)> | |
#map2 = affine_map<(d0, d1) -> (d0)> | |
module { | |
func @encrypt(%arg0: tensor<18x131072xi64>, %arg1: tensor<18x131072xi64>) -> tensor<18x131072xi64> { | |
%cst = arith.constant dense<[1, 131072]> : tensor<2xi64> | |
%cst_0 = arith.constant dense<1> : tensor<1xi64> | |
%cst_1 = arith.constant dense<131072> : tensor<1xi64> | |
%cst_2 = arith.constant dense<[30, 1]> : tensor<2xi64> | |
%c18 = arith.constant 18 : index | |
%c1 = arith.constant 1 : index | |
%c0 = arith.constant 0 : index | |
%cst_3 = arith.constant dense<[2305843009146585089, 2251799756013569, 2251799787995137, 2251800352915457, 2251799780917249, 2251799666884609, 2251799678943233, 2251799696244737, 2251800082382849, 2251799776198657, 2251799929028609, 2251799774887937, 2251799849336833, 2251799883153409, 2251799777771521, 2251799879483393, 2251799772266497, 2251799763091457, 2251799844093953, 2251799823384577, 2251799851958273, 2251799789568001, 2251799797432321, 2251799799267329, 2251799836753921, 2251799806345217, 2251799807131649, 2251799818928129, 2251799816568833, 2251799815520257]> : tensor<30xi64> | |
%4 = tensor.reshape %cst_3(%cst_2) : (tensor<30xi64>, tensor<2xi64>) -> tensor<30x1xi64> | |
%5 = tensor.extract_slice %4[0, 0] [18, 1] [1, 1] : tensor<30x1xi64> to tensor<18x1xi64> | |
%6 = linalg.init_tensor [18, 131072] : tensor<18x131072xi64> | |
%7 = linalg.tiled_loop (%arg2) = (%c0) to (%c18) step (%c1) ins (%arg3 = %arg0: tensor<18x131072xi64>, %arg4 = %5: tensor<18x1xi64>) outs (%arg5 = %6: tensor<18x131072xi64>) { | |
%22 = tensor.extract_slice %arg3[%arg2, 0] [1, 131072] [1, 1] : tensor<18x131072xi64> to tensor<1x131072xi64> | |
%23 = tensor.reshape %22(%cst_1) : (tensor<1x131072xi64>, tensor<1xi64>) -> tensor<131072xi64> | |
%24 = tensor.extract_slice %arg4[%arg2, 0] [1, 1] [1, 1] : tensor<18x1xi64> to tensor<1x1xi64> | |
%25 = tensor.reshape %24(%cst_0) : (tensor<1x1xi64>, tensor<1xi64>) -> tensor<1xi64> | |
%26 = tensor.extract %25[%c0] : tensor<1xi64> | |
%27 = call @__convert(%23, %26) : (tensor<131072xi64>, i64) -> tensor<131072xi64> | |
%28 = tensor.reshape %27(%cst) : (tensor<131072xi64>, tensor<2xi64>) -> tensor<1x131072xi64> | |
%29 = tensor.insert_slice %28 into %arg5[%arg2, 0] [1, 131072] [1, 1] : tensor<1x131072xi64> into tensor<18x131072xi64> | |
linalg.yield %29 : tensor<18x131072xi64> | |
} | |
return %7: tensor<18x131072xi64> | |
} | |
func private @__convert(tensor<131072xi64>, i64) -> tensor<131072xi64> | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment