Created
May 9, 2018 02:24
-
-
Save aravindsrinivas/3458d1b8f83758ff3db770f3748d948a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
from matplotlib import pyplot as plt | |
from time import time | |
from foxhound import activations | |
from foxhound import updates | |
from foxhound import inits | |
from foxhound.theano_utils import floatX, sharedX | |
import theano | |
import theano.tensor as T | |
from scipy.stats import gaussian_kde | |
from scipy.misc import imsave, imread | |
leakyrectify = activations.LeakyRectify() | |
rectify = activations.Rectify() | |
tanh = activations.Tanh() | |
sigmoid = activations.Sigmoid() | |
bce = T.nnet.binary_crossentropy | |
batch_size = 128 | |
nh = 2048 | |
init_fn = inits.Normal(scale=0.02) | |
def gaussian_likelihood(X, u=0., s=1.): | |
return (1./(s*np.sqrt(2*np.pi)))*np.exp(-(((X - u)**2)/(2*s**2))) | |
def scale_and_shift(X, g, b, e=1e-8): | |
X = X*g + b | |
return X | |
def g(X, w, g, b, w2, g2, b2, wo): | |
h = leakyrectify(scale_and_shift(T.dot(X, w), g, b)) | |
h2 = leakyrectify(scale_and_shift(T.dot(h, w2), g2, b2)) | |
y = T.dot(h2, wo) | |
return y | |
def d(X, w, g, b, w2, g2, b2, wo): | |
h = rectify(scale_and_shift(T.dot(X, w), g, b)) | |
h2 = tanh(scale_and_shift(T.dot(h, w2), g2, b2)) | |
y = sigmoid(T.dot(h2, wo)) | |
return y | |
gw = init_fn((1, nh)) | |
gg = inits.Constant(1.)(nh) | |
gg = inits.Normal(1., 0.02)(nh) | |
gb = inits.Normal(0., 0.02)(nh) | |
gw2 = init_fn((nh, nh)) | |
gg2 = inits.Normal(1., 0.02)(nh) | |
gb2 = inits.Normal(0., 0.02)(nh) | |
gy = init_fn((nh, 1)) | |
ggy = inits.Constant(1.)(1) | |
gby = inits.Normal(0., 0.02)(1) | |
dw = init_fn((1, nh)) | |
dg = inits.Normal(1., 0.02)(nh) | |
db = inits.Normal(0., 0.02)(nh) | |
dw2 = init_fn((nh, nh)) | |
dg2 = inits.Normal(1., 0.02)(nh) | |
db2 = inits.Normal(0., 0.02)(nh) | |
dy = init_fn((nh, 1)) | |
dgy = inits.Normal(1., 0.02)(1) | |
dby = inits.Normal(0., 0.02)(1) | |
g_params = [gw, gg, gb, gw2, gg2, gb2, gy] | |
d_params = [dw, dg, db, dw2, dg2, db2, dy] | |
Z = T.matrix() | |
X = T.matrix() | |
gen = g(Z, *g_params) | |
p_real = d(X, *d_params) | |
p_gen = d(gen, *d_params) | |
d_cost_real = bce(p_real, T.ones(p_real.shape)).mean() | |
d_cost_gen = bce(p_gen, T.zeros(p_gen.shape)).mean() | |
g_cost_d = bce(p_gen, T.ones(p_gen.shape)).mean() | |
d_cost = d_cost_real + d_cost_gen | |
g_cost = g_cost_d | |
cost = [g_cost, d_cost, d_cost_real, d_cost_gen] | |
lr = 0.001 | |
lrt = sharedX(lr) | |
d_updater = updates.Adam(lr=lrt) | |
g_updater = updates.Adam(lr=lrt) | |
d_updates = d_updater(d_params, d_cost) | |
g_updates = g_updater(g_params, g_cost) | |
updates = d_updates + g_updates | |
_train_g = theano.function([X, Z], cost, updates=g_updates) | |
_train_d = theano.function([X, Z], cost, updates=d_updates) | |
_train_both = theano.function([X, Z], cost, updates=updates) | |
_gen = theano.function([Z], gen) | |
_score = theano.function([X], p_real) | |
_cost = theano.function([X, Z], cost) | |
fig = plt.figure() | |
def vis(i): | |
s = 1. | |
u = 0. | |
zs = np.linspace(-1, 1, 500).astype('float32') | |
xs = np.linspace(-5, 5, 500).astype('float32') | |
ps = gaussian_likelihood(xs, 1.) | |
gs = _gen(zs.reshape(-1, 1)).flatten() | |
preal = _score(xs.reshape(-1, 1)).flatten() | |
kde = gaussian_kde(gs) | |
plt.clf() | |
plt.plot(xs, ps, '--', lw=2) | |
plt.plot(xs, kde(xs), lw=2) | |
plt.plot(xs, preal, lw=2) | |
plt.xlim([-5., 5.]) | |
plt.ylim([0., 1.]) | |
plt.ylabel('Prob') | |
plt.xlabel('x') | |
plt.legend(['P(data)', 'G(z)', 'D(x)']) | |
plt.title('GAN learning guassian') | |
fig.canvas.draw() | |
plt.show(block=False) | |
for i in range(10000): | |
zmb = np.random.uniform(-1, 1, size=(batch_size, 1)).astype('float32') | |
xmb = np.random.normal(1., 1, size=(batch_size, 1)).astype('float32') | |
if i % 10 == 0: | |
_train_g(xmb, zmb) | |
else: | |
_train_d(xmb, zmb) | |
if i % 10 == 0: | |
print i | |
vis(i) | |
lrt.set_value(floatX(lrt.get_value()*0.9999)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment