Skip to content

Instantly share code, notes, and snippets.

@asomoza
Created April 17, 2025 13:12
Show Gist options
  • Save asomoza/30a20066b4b19d9e897d34cb85469f0e to your computer and use it in GitHub Desktop.
Save asomoza/30a20066b4b19d9e897d34cb85469f0e to your computer and use it in GitHub Desktop.
HiDream with 24GB GPU and 128GB of RAM, simple
import torch
from diffusers import FlowMatchLCMScheduler, HiDreamImagePipeline
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
device = torch.device("cuda:0")
repo_id = "HiDream-ai/HiDream-I1-Dev"
llama_repo = "meta-llama/Llama-3.1-8B-Instruct"
torch_dtype = torch.bfloat16
prompt = "Ultra-realistic, high-quality photo of an anthropomorphic capybara with a tough, streetwise attitude, wearing a worn black leather jacket, dark sunglasses, and ripped jeans. The capybara is leaning casually against a gritty urban wall covered in vibrant graffiti. Behind it, in bold, dripping yellow spray paint, the word “HuggingFace” is scrawled in large street-art style letters. The scene is set in a dimly lit alleyway with moody lighting, scattered trash, and an edgy, rebellious vibe — like a character straight out of an underground comic book."
negative_prompt = "bad quality, low quality"
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(
llama_repo,
)
text_encoder_4 = LlamaForCausalLM.from_pretrained(
llama_repo,
output_hidden_states=True,
output_attentions=True,
torch_dtype=torch_dtype,
)
pipe = HiDreamImagePipeline.from_pretrained(
repo_id,
scheduler=None,
tokenizer_4=tokenizer_4,
text_encoder_4=text_encoder_4,
transformer=None,
vae=None,
torch_dtype=torch_dtype,
)
pipe.enable_model_cpu_offload()
with torch.no_grad():
(
prompt_embeds_t5,
negative_prompt_embeds_t5,
prompt_embeds_llama3,
negative_prompt_embeds_llama3,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=False,
device=device,
dtype=torch_dtype,
)
pipe = HiDreamImagePipeline.from_pretrained(
repo_id,
text_encoder=None,
tokenizer=None,
text_encoder_2=None,
tokenizer_2=None,
text_encoder_3=None,
tokenizer_3=None,
text_encoder_4=None,
tokenizer_4=None,
torch_dtype=torch_dtype,
)
pipe.transformer.enable_group_offload(
onload_device=device,
offload_device=torch.device("cpu"),
offload_type="leaf_level",
use_stream=True,
record_stream=True,
# low_cpu_mem_usage=True,
)
pipe.scheduler = FlowMatchLCMScheduler.from_config(pipe.scheduler.config, shift=6.0)
pipe.to(device)
image = pipe(
prompt_embeds_t5=prompt_embeds_t5,
prompt_embeds_llama3=prompt_embeds_llama3,
negative_prompt_embeds_t5=negative_prompt_embeds_t5,
negative_prompt_embeds_llama3=negative_prompt_embeds_llama3,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
height=1024,
width=1024,
guidance_scale=0.0,
num_inference_steps=28,
generator=torch.Generator(device).manual_seed(43),
).images[0]
image.save("test.png")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment