Last active
January 18, 2025 12:31
-
-
Save autoregression/9fdd829c9f0603a9e8799aeb8df7ca0e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""DiM (Diffusion Mixer).""" | |
import math | |
import typing | |
import einops | |
import torch | |
class DiMConfig(typing.NamedTuple): | |
input_dimension: int = 3 | |
hidden_dimension: int = 256 | |
layers: int = 4 | |
sequence_length: int = 256 | |
patch_size: int = 2 | |
def zero(module: torch.nn.Module) -> torch.nn.Module: | |
torch.nn.init.zeros_(module.weight) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
return module | |
def modulate(x: torch.Tensor, scale: torch.Tensor) -> torch.Tensor: | |
return x * (1 + scale) | |
class Fourier(torch.nn.Module): | |
def __init__(self, hidden_dimension: int) -> None: | |
super().__init__() | |
self.register_buffer("scales", torch.randn((hidden_dimension // 2, 1))) | |
self.linear = torch.nn.Linear(hidden_dimension, hidden_dimension, bias=False) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: # assume x is (B,). | |
x = 2 * math.pi * x.unsqueeze(-1) @ self.scales.T | |
x = self.linear(torch.cat([x.cos(), x.sin()], dim=-1)) | |
return x[:, None, :] | |
class MLP(torch.nn.Module): | |
def __init__(self, hidden_dimension: int, ratio: int) -> None: | |
super().__init__() | |
self.linear_1 = torch.nn.Linear(hidden_dimension, hidden_dimension * ratio, bias=False) | |
self.linear_2 = torch.nn.Linear(hidden_dimension, hidden_dimension * ratio, bias=False) | |
self.linear_3 = zero(torch.nn.Linear(hidden_dimension * ratio, hidden_dimension, bias=False)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.linear_1(x) * torch.nn.functional.silu(self.linear_2(x)) | |
x = self.linear_3(x) | |
return x | |
class Block(torch.nn.Module): | |
def __init__(self, config: DiMConfig) -> None: | |
super().__init__() | |
self.norm_1 = torch.nn.LayerNorm(config.hidden_dimension, bias=False) | |
self.norm_2 = torch.nn.LayerNorm(config.hidden_dimension, bias=False) | |
self.mlp_1 = MLP(config.sequence_length, ratio=1) | |
self.mlp_2 = MLP(config.hidden_dimension, ratio=3) | |
self.modulation = zero(torch.nn.Linear(config.hidden_dimension, config.hidden_dimension * 2)) | |
def forward(self, x: torch.Tensor, time: torch.Tensor) -> torch.Tensor: | |
s1, s2 = self.modulation(torch.nn.functional.silu(time)).chunk(2, dim=-1) | |
x = x + self.mlp_1(modulate(self.norm_1(x), s1).transpose(-1, -2)).transpose(-1, -2) | |
x = x + self.mlp_2(modulate(self.norm_2(x), s2)) | |
return x | |
class DiM(torch.nn.Module): | |
def __init__(self, config: DiMConfig) -> None: | |
super().__init__() | |
self.norm = torch.nn.LayerNorm(config.hidden_dimension) | |
self.fourier = Fourier(config.hidden_dimension) | |
self.blocks = torch.nn.ModuleList([Block(config) for _ in range(config.layers)]) | |
self.patch = torch.nn.Conv2d( | |
config.input_dimension, | |
config.hidden_dimension, | |
config.patch_size, | |
config.patch_size, | |
padding=0, | |
bias=False, | |
) | |
self.unpatch = zero( | |
torch.nn.ConvTranspose2d( | |
config.hidden_dimension, | |
config.input_dimension, | |
config.patch_size, | |
config.patch_size, | |
padding=0, | |
bias=False, | |
) | |
) | |
def forward(self, x: torch.Tensor, time: torch.Tensor) -> torch.Tensor: | |
time = self.fourier(time) | |
x = self.patch(x) | |
h = x.size(-2) | |
x = einops.rearrange(x, "b c h w -> b (h w) c") | |
for block in self.blocks: | |
x = block(x, time) | |
x = self.norm(x) | |
x = einops.rearrange(x, "b (h w) c -> b c h w", h=h) | |
x = self.unpatch(x) | |
return x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment