Created
February 14, 2025 19:59
-
-
Save av/0bbc2ca24d8ad13c58da1390ef2a7d51 to your computer and use it in GitHub Desktop.
Qwen-2.5-0.5B-stripes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from transformers import AutoModelForCausalLM | |
import gc | |
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") | |
model = AutoModelForCausalLM.from_pretrained("kz919/QwQ-0.5B-Distilled-SFT") | |
fig = plt.figure(figsize=(15, 10)) | |
ax = fig.add_subplot(111, projection='3d') | |
z_offset = 0 | |
layer_count = 0 | |
cmap = plt.cm.viridis | |
for name, param in model.named_parameters(): | |
if param.shape == (896, 896) and layer_count < 3: | |
data = param.detach().cpu().numpy() | |
hist, bin_edges = np.histogram(data, bins=64) | |
cumulative_hist = np.cumsum(hist) | |
total_values = cumulative_hist[-1] | |
median_bin = np.searchsorted(cumulative_hist, total_values // 2) | |
mask = (data >= bin_edges[median_bin]) & (data < bin_edges[median_bin + 1]) | |
valid_points = np.where(mask) | |
scatter = ax.scatter( | |
valid_points[0], | |
valid_points[1], | |
data[valid_points] + z_offset, | |
c=data[valid_points], | |
cmap=cmap, | |
alpha=0.1, | |
s=0.2, | |
) | |
z_offset += 0.2 | |
layer_count += 1 | |
# Clean up | |
del data, mask, valid_points | |
gc.collect() | |
ax.set_xlabel('X') | |
ax.set_ylabel('Y') | |
ax.set_zlabel('Values + Offset') | |
ax.view_init(elev=22.) | |
plt.colorbar(scatter) | |
plt.title(f'Stacked visualization of {layer_count} layers (896x896)') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment