Last active
July 6, 2025 16:31
-
-
Save awni/773e2a12079da40a1cbc566686c84c8f to your computer and use it in GitHub Desktop.
remove the tokenizer from there and use train_dataset=CacheDataset(ds_train),
val_dataset=CacheDataset(ds_valid),
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Downloaded and ran your notebook:
When calling the train() function from mlx_lm.tuner.trainer, it passes a tokenizer argument, which led to the following error:
TypeError: train() got an unexpected keyword argument 'tokenizer'
Checked the function signature using
help(train)
:Help on function train in module mlx_lm.tuner.trainer:
train(
model,
optimizer,
train_dataset,
val_dataset,
args: mlx_lm.tuner.trainer.TrainingArgs = TrainingArgs(...),
loss: callable = default_loss,
iterate_batches: callable = iterate_batches,
training_callback: TrainingCallback = None
)
It states that tokenizer is not a valid argument...but if you remove it then it cascades into another error.