Created
October 30, 2016 01:03
-
-
Save baku89/73dd11f3b9f325efd884f3469b0d3f32 to your computer and use it in GitHub Desktop.
My first video deep-dream
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from batcountry import BatCountry | |
import numpy as np | |
from PIL import Image | |
from glob import glob | |
import os | |
import random | |
CAFFE_ROOT = '../caffe' | |
INPUT_PATH = 'input.jpg' | |
def gradient_ascent_step(net, step_size=1.5, end="inception_4c/output", | |
jitter=32, clip=True, objective_fn=None, **objective_params): | |
# if the objective function is None, initialize it as | |
# the standard L2 objective | |
if objective_fn is None: | |
objective_fn = BatCountry.L2_objective | |
# input image is stored in Net's 'data' blob | |
src = net.blobs["data"] | |
dst = net.blobs[end] | |
# apply jitter shift | |
ox, oy = np.random.randint(-jitter, jitter + 1, 2) | |
print ox, oy | |
src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) | |
net.forward(end=end) | |
objective_fn(dst, **objective_params) | |
net.backward(start=end) | |
g = src.diff[0] | |
# apply normalized ascent step to the input image | |
src.data[:] += step_size / np.abs(g).mean() * g # origin | |
#unshift image | |
src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) | |
# unshift image | |
if clip: | |
bias = net.transformer.mean["data"] | |
src.data[:] = np.clip(src.data, -bias, 255 - bias) | |
def dream(path): | |
print '%s/models/bvlc_googlenet' % (CAFFE_ROOT) | |
bc = BatCountry('%s/models/bvlc_googlenet' % (CAFFE_ROOT)) | |
image = bc.dream(np.float32(Image.open(path)), end='inception_3a/output', step_fn=gradient_ascent_step, step_size=2, octave_n=12) | |
bc.cleanup() | |
filename = 'result/perlin_c/out_%s' % os.path.basename(path) | |
result = Image.fromarray(np.uint8(image)) | |
result.save(filename) | |
for path in glob('./perlin_c/*.png'): | |
# print "BK: processing... %s" % path | |
np.random.seed(1234) | |
dream(path) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment