Last active
September 20, 2020 07:28
-
-
Save basaundi/4fc0a61419858c748b59 to your computer and use it in GitHub Desktop.
python rewrite of Moses' multi-bleu.perl; usable as a library
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Ander Martinez Sanchez | |
from __future__ import division, print_function | |
from math import exp, log | |
from collections import Counter | |
def ngram_count(words, n): | |
if n <= len(words): | |
return Counter(zip(*[words[i:] for i in range(n)])) | |
return Counter() | |
def max_count(c1, c2): | |
return Counter({k: max(c1[k], c2[k]) for k in c1}) | |
def min_count(c1, c2): | |
return Counter({k: min(c1[k], c2[k]) for k in c1}) | |
def closest_min_length(candidate, references): | |
l0 = len(candidate) | |
return min((abs(len(r) - l0), len(r)) for r in references)[1] | |
def safe_log(n): | |
if n <= 0: | |
return -9999999999 | |
return log(n) | |
def precision_n(candidate, references, n): | |
ref_max = reduce(max_count, [ngram_count(ref, n) for ref in references]) | |
candidate_ngram_count = ngram_count(candidate, n) | |
total = sum(candidate_ngram_count.values()) | |
correct = sum(reduce(min_count, (ref_max, candidate_ngram_count)).values()) | |
score = (correct / total) if total else 0 | |
return score, correct, total | |
def bleu(candidate, references, maxn=4): | |
precs = [precision_n(candidate, references, n) for n in range(1, maxn+1)] | |
bp = exp(1 - closest_min_length(candidate, references) / len(candidate)) | |
return bp * exp(sum(safe_log(precs[n]) for n in range(maxn)) / maxn) | |
def tokenize(txt): | |
return txt.strip().split() | |
def tokenize_lower(txt): | |
return txt.strip().lower().split() | |
def multi_bleu(candidates, all_references, tokenize_fn=tokenize, maxn=4): | |
correct = [0] * maxn | |
total = [0] * maxn | |
cand_tot_length = 0 | |
ref_closest_length = 0 | |
for candidate, references in zip(candidates, zip(*all_references)): | |
candidate = tokenize_fn(candidate) | |
references = map(tokenize_fn, references) | |
cand_tot_length += len(candidate) | |
ref_closest_length += closest_min_length(candidate, references) | |
for n in range(maxn): | |
sc, cor, tot = precision_n(candidate, references, n + 1) | |
correct[n] += cor | |
total[n] += tot | |
precisions = [(correct[n] / total[n]) if correct[n] else 0 for n in range(maxn)] | |
if cand_tot_length < ref_closest_length: | |
brevity_penalty = exp(1 - ref_closest_length / cand_tot_length) | |
else: | |
brevity_penalty = 1 | |
score = 100 * brevity_penalty * exp( | |
sum(safe_log(precisions[n]) for n in range(maxn)) / maxn) | |
prec_pc = [100 * p for p in precisions] | |
return score, prec_pc, brevity_penalty, cand_tot_length, ref_closest_length | |
def print_multi_bleu(candidates, all_references, tokenize_fn=tokenize, maxn=4): | |
score, precisions, brevity_penalty, cand_tot_length, ref_closest_length = \ | |
multi_bleu(candidates, all_references, tokenize_fn, maxn) | |
print("BLEU = {:.2f}, {:.1f}/{:.1f}/{:.1f}/{:.1f} " | |
"(BP={:.3f}, ratio={:.3f}, hyp_len={:d}, ref_len={:d})".format( | |
score, precisions[0], precisions[1], precisions[2], precisions[3], | |
brevity_penalty, cand_tot_length / ref_closest_length, cand_tot_length, | |
ref_closest_length)) | |
if __name__ == "__main__": | |
import sys | |
import argparse | |
parser = argparse.ArgumentParser( | |
description='BLEU score on multiple references.') | |
parser.add_argument('-lc', help='Lowercase', action='store_true') | |
parser.add_argument('reference', help='Reads the references from reference' | |
' or reference0, reference1, ...') | |
args = parser.parse_args() | |
tokenize_fn = tokenize_lower if args.lc else tokenize | |
# TODO: Multiple references | |
reference_files = [args.reference] | |
open_files = map(open, reference_files) | |
print_multi_bleu(sys.stdin, open_files, tokenize_fn, 4) | |
for fd in open_files: | |
fd.close() |
def max_count(c1, c2):
return Counter({k: max(c1[k], c2[k]) for k in c1})
Should this consider k
in c2
as well?
@hhexiy , for some reason I didn't get any notification about your comment and I just read it.
I think you are right, but as this version of the script didn't implement multiple references it didn't actually matter.
Hey, thank you for releasing this. Can add license information? Thank you!
@eisenjulian , I want to publish this as Public Domain but I don't know if it conflicts in anyway with MOSES' license.
I wrote the code while looking at MOSES multi-bleu.perl code. This might need to be LGPL too.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
No multithreading or multiple references. I will add it when needed.