-
-
Save bashkirtsevich/28f5af407a08722bc30d9028a9a29829 to your computer and use it in GitHub Desktop.
PyTorch GRU example with a Keras-like interface.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn.model_selection import train_test_split | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
np.random.seed(1337) | |
MAX_LEN = 30 | |
EMBEDDING_SIZE = 64 | |
BATCH_SIZE = 32 | |
EPOCH = 40 | |
DATA_SIZE = 1000 | |
INPUT_SIZE = 300 | |
def batch(tensor, batch_size): | |
tensor_list = [] | |
length = tensor.shape[0] | |
i = 0 | |
while True: | |
if (i+1) * batch_size >= length: | |
tensor_list.append(tensor[i * batch_size: length]) | |
return tensor_list | |
tensor_list.append(tensor[i * batch_size: (i+1) * batch_size]) | |
i += 1 | |
class Estimator(object): | |
def __init__(self, model): | |
self.model = model | |
def compile(self, optimizer, loss): | |
self.optimizer = optimizer | |
self.loss_f = loss | |
def _fit(self, X_list, y_list): | |
""" | |
train one epoch | |
""" | |
loss_list = [] | |
acc_list = [] | |
for X, y in zip(X_list, y_list): | |
X_v = Variable(torch.from_numpy(np.swapaxes(X,0,1)).float()) | |
y_v = Variable(torch.from_numpy(y).long(), requires_grad=False) | |
self.optimizer.zero_grad() | |
y_pred = self.model(X_v, self.model.initHidden(X_v.size()[1])) | |
loss = self.loss_f(y_pred, y_v) | |
loss.backward() | |
self.optimizer.step() | |
## for log | |
loss_list.append(loss.data[0]) | |
classes = torch.topk(y_pred, 1)[1].data.numpy().flatten() | |
acc = self._accuracy(classes, y) | |
acc_list.append(acc) | |
return sum(loss_list) / len(loss_list), sum(acc_list) / len(acc_list) | |
def fit(self, X, y, batch_size=32, nb_epoch=10, validation_data=()): | |
X_list = batch(X, batch_size) | |
y_list = batch(y, batch_size) | |
for t in range(1, nb_epoch + 1): | |
loss, acc = self._fit(X_list, y_list) | |
val_log = '' | |
if validation_data: | |
val_loss, val_acc = self.evaluate(validation_data[0], validation_data[1], batch_size) | |
val_log = "- val_loss: %06.4f - val_acc: %06.4f" % (val_loss, val_acc) | |
print("Epoch %s/%s loss: %06.4f - acc: %06.4f %s" % (t, nb_epoch, loss, acc, val_log)) | |
def evaluate(self, X, y, batch_size=32): | |
y_pred = self.predict(X) | |
y_v = Variable(torch.from_numpy(y).long(), requires_grad=False) | |
loss = self.loss_f(y_pred, y_v) | |
classes = torch.topk(y_pred, 1)[1].data.numpy().flatten() | |
acc = self._accuracy(classes, y) | |
return loss.data[0], acc | |
def _accuracy(self, y_pred, y): | |
return sum(y_pred == y) / y.shape[0] | |
def predict(self, X): | |
X = Variable(torch.from_numpy(np.swapaxes(X,0,1)).float()) | |
y_pred = self.model(X, self.model.initHidden(X.size()[1])) | |
return y_pred | |
def predict_classes(self, X): | |
return torch.topk(self.predict(X), 1)[1].data.numpy().flatten() | |
class GRU(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size): | |
super(GRU, self).__init__() | |
self.hidden_size = hidden_size | |
self.gru = nn.GRU(input_size, hidden_size) | |
self.linear = nn.Linear(hidden_size, output_size) | |
def forward(self, input, hidden): | |
_, hn = self.gru(input, hidden) | |
## from (1, N, hidden) to (N, hidden) | |
rearranged = hn.view(hn.size()[1], hn.size(2)) | |
out1 = self.linear(rearranged) | |
return out1 | |
def initHidden(self, N): | |
return Variable(torch.randn(1, N, self.hidden_size)) | |
def main(): | |
class_size = 7 | |
## Fake data | |
X = np.random.randn(DATA_SIZE * class_size, MAX_LEN, INPUT_SIZE) | |
y = np.array([i for i in range(class_size) for _ in range(DATA_SIZE)]) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2) | |
model = GRU(INPUT_SIZE, EMBEDDING_SIZE, class_size) | |
clf = Estimator(model) | |
clf.compile(optimizer=torch.optim.Adam(model.parameters(), lr=1e-4), | |
loss=nn.CrossEntropyLoss()) | |
clf.fit(X_train, y_train, batch_size=BATCH_SIZE, nb_epoch=EPOCH, | |
validation_data=(X_test, y_test)) | |
score, acc = clf.evaluate(X_test, y_test) | |
print('Test score:', score) | |
print('Test accuracy:', acc) | |
torch.save(model, 'model.pt') | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment