Created
October 21, 2016 14:10
-
-
Save bayerj/73aa2d6a3a3e5db14df071b91bcb2d22 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class _SequentialAutoregressive(tf.contrib.distributions.Distribution): | |
def __init__(self, f_process, base_dist_cls, initial_dist, | |
n_time_steps=None, | |
dtype=tf.float32, | |
name='sequential_auto_regressive'): | |
self.f_process = f_process | |
self.base_dist_cls = base_dist_cls | |
self.initial_dist = initial_dist | |
self.n_time_steps = n_time_steps | |
super(_SequentialAutoregressive, self).__init__( | |
dtype=dtype, | |
parameters={}, | |
is_continuous=True, | |
is_reparameterized=False, | |
validate_args=False, | |
allow_nan_stats=False, | |
name=name | |
) | |
def _log_prob(self, value): | |
log_pdf0 = self.initial_dist.log_pdf(value[0, :, :]) | |
_, stats = self.f_process( | |
value[:-1, :, :], | |
value.get_shape()[0].value - 1, None) | |
rv = self.base_dist_cls(*stats) | |
log_pdfs = rv.log_pdf(value[1:, :, :]) | |
return tf.concat(0, [tf.expand_dims(log_pdf0, 0), log_pdfs]) | |
def _sample_n(self, n, seed=None): | |
obs = [tf.reshape(self.initial_dist.sample_n(n), (n, -1))] | |
state_tm1 = None | |
or i in range(self.n_time_steps - 1): | |
states, stats = self.f_process(obs[-1:], 1, state_tm1) | |
state_tm1 = states[-1] | |
rv = self.base_dist_cls(*stats) | |
obs.append(tf.reshape(rv.sample(1)[0], (1, -1))) | |
return tf.pack(obs) | |
def _sample(self, sample_shape=(), seed=None): | |
raise NotImplemented | |
def _get_batch_shape(self): | |
return tf.TensorShape([self.n_time_steps]) | |
def _get_event_shape(self): | |
return tf.TensorShape([None, None]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment