Created
May 11, 2020 15:01
-
-
Save bbennett36/9aaa0100453bd9eb8ed07ef22368341b to your computer and use it in GitHub Desktop.
confusion matrix
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import itertools | |
import numpy as np | |
import sklearn.metrics as metrics | |
def get_confusion_matrix(target, preds): | |
return metrics.confusion_matrix(target, preds) | |
def plot_confusion_matrix(cm, classes, | |
normalize=True, | |
figsize=(8,5), | |
title='Confusion Matrix', | |
cmap=plt.cm.Blues): | |
""" | |
This function prints and plots the confusion matrix. | |
Normalization can be applied by setting `normalize=True`. | |
""" | |
if normalize: | |
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] | |
print("Normalized confusion matrix") | |
else: | |
print('Confusion matrix, without normalization') | |
fig, ax = plt.subplots(figsize=figsize) | |
plt.imshow(cm, interpolation='nearest', cmap=cmap) | |
plt.title(title) | |
plt.colorbar() | |
tick_marks = np.arange(len(classes)) | |
plt.xticks(tick_marks, classes, rotation=45) | |
plt.yticks(tick_marks, classes) | |
fmt = '.2f' if normalize else 'd' | |
thresh = cm.max() / 2. | |
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): | |
plt.text(j, i, format(cm[i, j], fmt), | |
horizontalalignment="center", | |
color="white" if cm[i, j] > thresh else "black") | |
plt.tight_layout() | |
plt.ylabel('True label') | |
plt.xlabel('Predicted label') | |
plt.close(fig) | |
return fig | |
# Example - | |
cnf_matrix = metrics.confusion_matrix(target, preds) | |
plot_confusion_matrix(cnf_matrix, classes=['Negatives','Positives']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment