Created
April 4, 2025 16:28
-
-
Save bbolker/a3699babefb2845f5925532a8bed1136 to your computer and use it in GitHub Desktop.
example of simulation ("parametric Bayes")-based confidence intervals for Z-I gamma
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(glmmTMB) | |
set.seed(101) | |
dd <- data.frame(x = rnorm(1000)) | |
dd$y0 <- simulate_new( ~ 1, | |
seed = 101, | |
ziformula = ~ 1, | |
family = ziGamma(link = "log"), | |
newdata = dd, | |
newparams = list( | |
beta = c(0), | |
betadisp = 1, | |
betazi = 0 | |
) | |
)[[1]] | |
all.equal(plogis(0), mean(dd$y0 == 0), tolerance = 0.02) | |
par(las=1); hist(dd$y0[dd$y0 > 0], breaks = 50, freq = FALSE) | |
curve(dgamma(x, shape = exp(1), scale = 1/exp(1)), add = TRUE, col = "red", lwd = 2) | |
## is zigamma simulation working right? | |
params <- list( | |
beta = c(0,1), | |
betazi = c(-2,1), | |
betadisp = 1) | |
dd$y <- simulate_new( ~ 1 + x, | |
seed = 101, | |
ziformula = ~ 1 + x, | |
family = ziGamma(link = "log"), | |
newdata = dd, | |
newparams = params | |
)[[1]] | |
dd <- dd[order(dd$y), ] | |
plot(dd$y) | |
m <- glmmTMB(y ~ x, ziformula = ~ x, | |
family = ziGamma(link = "log"), | |
data = dd) | |
mm <- unlist(fixef(m)) | |
cbind(mm, true = unlist(params)) | |
vv <- vcov(m, full = TRUE) | |
pars <- MASS::mvrnorm(1000, mm, vv) | |
## surprisingly slow (2 minutes) | |
system.time( | |
simres <- apply(pars, 1, | |
\(p) predict(m, newparams = p, type = "response") | |
) | |
) | |
X <- getME(m, "X") | |
Xzi <- getME(m, "Xzi") | |
mypred <- function(p) { | |
zprob <- plogis(Xzi %*% p[3:4]) | |
mu <- exp(X %*% p[1:2]) | |
mu * (1-zprob) | |
} | |
simres2 <- apply(pars, 1, mypred) | |
plot(mypred(pars[100,])) | |
lines(dd$y, col = 2, lwd = 2) | |
## matplot(simres, pch = ".", col = "black") | |
matplot(simres2, pch = ".", col = "black") | |
matpoints(simres, pch = ".", col = "red") | |
points(dd$y, col = 2, pch = 16) | |
points(predict(m, type = "response"), col = adjustcolor("blue", alpha = 0.2), | |
pch = 16) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment