Created
June 25, 2019 10:52
-
-
Save bhpfelix/b60e218a645964dcdd8852b5b46cdf89 to your computer and use it in GitHub Desktop.
Comparing TensorFlow and PyTorch Operation (AvgPool, Conv2d)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
np.random.seed(0) | |
import torch | |
import torch.nn as nn | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
slim = tf.contrib.slim | |
x = np.random.randn(1, 41, 41, 1) | |
tf_input = tf.convert_to_tensor(x, dtype=tf.float32) | |
y = slim.avg_pool2d(tf_input, [3, 3], stride=1, padding='SAME') | |
# y = slim.conv2d(y, 1, [3, 3], rate=12, weights_initializer=tf.ones_initializer, | |
# padding='SAME', activation_fn=None, normalizer_fn=None) | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
y_value = sess.run([y, tf_input])[0] | |
plt.matshow(y_value.squeeze()) | |
plt.colorbar() | |
plt.title('tf') | |
pt_input = torch.from_numpy(x.transpose(0, 3, 1, 2)).float() | |
pt_avg = nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False) | |
pt_conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=12, dilation=12) | |
pt_conv.weight.data = torch.ones(1, 1, 3, 3) | |
pt_conv.bias.data = torch.zeros(1) | |
pt_out = pt_avg(pt_input) | |
# pt_out = pt_conv(pt_out) | |
pt_out = pt_out.detach().numpy().transpose((0, 2, 3, 1)) | |
print(pt_out.shape) | |
plt.matshow(pt_out.squeeze()) | |
plt.colorbar() | |
plt.title('pt') | |
diff = np.abs(y_value.squeeze() - pt_out.squeeze()) | |
plt.matshow(diff) | |
plt.colorbar() | |
plt.title('diff') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Must set
count_include_pad=False
for PyTorch AvgPool2d in order to match the default behavior of TensorFlow.