Created
July 21, 2017 18:25
-
-
Save borgwang/46583b4773992156de67a3ab40511d34 to your computer and use it in GitHub Desktop.
kmeans
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
data = [[1.658985, 4.285136], [-3.453687, 3.424321], [4.838138, -1.151539], | |
[-5.37971, -3.362104], [0.972564, 2.924086], [-3.567919, 1.531611], | |
[0.450614, -3.302219], [-3.487105, -1.724432], [2.668759, 1.594842], | |
[-3.15648, 3.191137], [3.165506, -3.999838], [-2.786837, -3.099354], | |
[4.208187, 2.984927], [-2.123337, 2.943366], [0.704199, -0.479481], | |
[-0.392370, -3.963704], [2.831667, 1.574018], [-0.790153, 3.343144], | |
[2.943496, -3.357075], [-3.195883, -2.283926], [2.336445, 2.875106], | |
[-1.786345, 2.554248], [2.190101, -1.906020], [-3.403367, -2.778288], | |
[1.778124, 3.880832], [-1.688346, 2.230267], [2.592976, -2.054368], | |
[-4.00725, -3.207066], [2.257734, 3.387564], [-2.679011, 0.785119], | |
[0.939512, -4.023563], [-3.674424, -2.261084], [2.046259, 2.735279], | |
[-3.189470, 1.780269], [4.372646, -0.822248], [-2.579316, -3.497576], | |
[1.889034, 5.190400], [-0.798747, 2.185588], [2.836520, -2.658556], | |
[-3.837877, -3.253815], [2.096701, 3.886007], [-2.709034, 2.923887], | |
[3.367037, -3.184789], [-2.121479, -4.232586], [2.329546, 3.179764], | |
[-3.284816, 3.273099], [3.091414, -3.815232], [-3.762093, -2.432191], | |
[3.542056, 2.778832], [-1.736822, 4.241041], [2.127073, -2.983680], | |
[-4.323818, -3.938116], [3.792121, 5.135768], [-4.786473, 3.358547], | |
[2.624081, -3.260715], [-4.009299, -2.978115], [2.493525, 1.963710], | |
[-2.513661, 2.642162], [1.864375, -3.176309], [-3.171184, -3.572452], | |
[2.894220, 2.489128], [-2.562539, 2.884438], [3.491078, -3.947487], | |
[-2.565729, -2.012114], [3.332948, 3.983102], [-1.616805, 3.573188], | |
[2.280615, -2.559444], [-2.651229, -3.103198], [2.321395, 3.154987], | |
[-1.685703, 2.939697], [3.031012, -3.620252], [-4.599622, -2.185829], | |
[4.196223, 1.126677], [-2.133863, 3.093686], [4.668892, -2.562705], | |
[-2.793241, -2.149706], [2.884105, 3.043438], [-2.967647, 2.848696], | |
[4.479332, -1.764772], [-4.905566, -2.911070]] | |
def cal_dist(d1, d2): | |
return ((d1[0] - d2[:,0])**2 + (d1[1] - d2[:,1])**2) ** 0.5 | |
def re_classify(centers, data): | |
res = np.zeros(len(data)) | |
for i, d in enumerate(data): | |
dists = cal_dist(d, centers) | |
r = np.argmin(dists) | |
res[i] = r | |
return res | |
def re_center(k, classfication, data): | |
centers = [] | |
for i in range(k): | |
centers.append(np.mean(data[np.where(classfication == i)[0]], 0)) | |
return np.array(centers) | |
data = np.array(data) | |
data_size = len(data) | |
k = 4 | |
center_idxs = np.random.choice(range(data_size), size=k) | |
centers = data[center_idxs] | |
while True: | |
cls_res = re_classify(centers, data) | |
new_centers = re_center(k, cls_res, data) | |
if np.mean(new_centers - centers) < 1e-4: | |
break | |
centers = new_centers | |
class1 = data[np.where(cls_res == 0)[0]] | |
class2 = data[np.where(cls_res == 1)[0]] | |
class3 = data[np.where(cls_res == 2)[0]] | |
class4 = data[np.where(cls_res == 3)[0]] | |
plt.scatter(class1[:,0], class1[:,1], c='r') | |
plt.scatter(class2[:,0], class2[:,1], c='g') | |
plt.scatter(class3[:,0], class3[:,1], c='b') | |
plt.scatter(class4[:,0], class4[:,1], c='y') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment