Last active
February 1, 2025 04:34
-
-
Save boyboi86/5e00faf48f60abfdbe838fbdee269471 to your computer and use it in GitHub Desktop.
Generate Synthetic High-Frequency Data for Quantitative research
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import datetime as dt | |
from sklearn.datasets import make_classification | |
def create_price_data(start_price: float = 1000.00, mu: float = .0, var: float = 1.0, n_samples: int = 1000000): | |
i = np.random.normal(mu, var, n_samples) | |
df0 = pd.date_range(periods=n_samples, freq=pd.tseries.offsets.Minute(), end=dt.datetime.today()) | |
X = pd.Series(i, index=df0, name = "close").to_frame() | |
X.iat[0, 'close'] = start_price | |
X.cumsum().plot.line() | |
return X.cumsum() | |
def make_randomt1_data(n_samples: int =10000, max_days: float = 5., Bdate: bool = True): | |
# generate a random dataset for a classification problem | |
if Bdate: | |
_freq = pd.tseries.offsets.BDay() | |
else: | |
_freq = 'D' | |
_today = dt.datetime.today() | |
df0 = pd.date_range(periods=n_samples, freq=_freq, end=_today) | |
rand_days = np.random.uniform(1, max_days, n_samples) | |
rand_days = pd.Series([dt.timedelta(days = d) for d in rand_days], index = df0) | |
df1 = df0 + pd.to_timedelta(rand_days, unit='d') | |
df1.sort_values(inplace=True) | |
X = pd.Series(df1, index = df0, name='t1').to_frame() | |
return X | |
def make_classification_data(n_features=40, n_informative=10, n_redundant=10, n_samples=10000, days: int = 1): | |
# generate a random dataset for a classification problem | |
_today = dt.datetime.today() | |
X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=n_informative, n_redundant=n_redundant, random_state=0, shuffle=False) | |
df0 = pd.date_range(periods=n_samples, freq=pd.tseries.offsets.BDay(), end=_today) | |
X = pd.DataFrame(X, index=df0) | |
y = pd.Series(y, index=df0).to_frame('bin') | |
df0 = ['I_%s' % i for i in range(n_informative)] + ['R_%s' % i for i in range(n_redundant)] | |
df0 += ['N_%s' % i for i in range(n_features - len(df0))] | |
X.columns = df0 | |
y['w'] = 1.0 / y.shape[0] | |
y['t1'] = pd.Series(y.index, index=y.index - dt.timedelta(days = days)) | |
y.at[-1:, 't1'] = _today | |
y.t1.fillna(method ='bfill', inplace = True) | |
return X, y | |
def create_portfolio(price: list = [95, 1000], position: list = [1000, 10000], n_sample: int = 10000, imbalance: bool = True): | |
df = make_randomt1_data(n_samples = n_sample, max_days = 10., Bdate = True) | |
df['open'] = np.random.uniform(price[0], price[1], n_sample) | |
df['close'] = df['open'].apply(lambda x: x * np.random.uniform(0.8, 1.2)) | |
df['open_pos'] = np.random.uniform(position[0], position[1], n_sample).round() | |
df['close_pos'] = np.random.uniform(position[0], position[1], n_sample).round() | |
df['yield'] = np.random.uniform(0.012, 0.12, n_sample) | |
df['expense'] = df['open'].apply(lambda x: x * np.random.uniform(0.005, 0.05)) | |
df['label'] = np.nan | |
if imbalance: | |
for idx in df[df['open']<200].index:df.loc[idx,'label'] = 1 | |
else: | |
for idx in df[df['open']<df['open'].quantile(0.4)].index:df.loc[idx,'label'] = 1 | |
df['label'].fillna(0, inplace= True) | |
df['clean_open'] = df['open'].apply(lambda x: x * np.random.uniform(0.92, 0.95)) | |
df['clean_close'] = df['yield'] | |
df['clean_close'] = df['clean_close'].apply(lambda x: 1-x).mul(df['close']) | |
df['yield'] = df['yield'].mul(df['close']) | |
p_str = "Sample Portfolio Construct:\n{0}\nEquity label: {1}\nBond label: {2}\nEquity to Debt Ratio: {3:.4f}" | |
p(p_str.format("=" * 55, | |
df['label'].value_counts()[0], | |
df['label'].value_counts()[1], | |
df['label'].value_counts()[0]/df['label'].value_counts()[1])) | |
junk_bond = df[(df['yield'] >= 0.1) & (df['label'] == 1)].count()[0] | |
div_equity = df[(df['yield'] >= 0.1) & (df['label'] != 1)].count()[0] | |
p("\nJunk bond (Below BBB-grade): {0} %\nDividend equity: {1} %".format(100 * junk_bond/ n_sample, 100 * div_equity/n_sample)) | |
return df | |
def create_rtndf(n_samples: int = 1000, max_days: int = 5, rtn:list = [-.5, .5], Bdate: bool = True): | |
if rtn[0] >= rtn[1] or rtn[1] < 0: | |
rtn = [-.5,.5] | |
df = make_randomt1_data(n_samples = n_samples//2, max_days = max_days, Bdate = Bdate) | |
idx = pd.to_datetime(df.index.union(df.t1).sort_values()) | |
df = pd.DataFrame(1., index = idx, columns = np.arange(n_samples)) | |
df = df.applymap(lambda x: np.random.uniform(rtn[0], rtn[1])) | |
return df |
The iat method is incorrectly used. It should be iat[0, 0] instead of iat[0, 'close'] because iat is used for integer-location based indexing.
Here's a revised version of your code with the necessary corrections:
def create_price_data(start_price: float = 1000.00, mu: float = 0.0, var: float = 1.0, n_samples: int = 1000000):
# Generate random walk
i = np.random.normal(mu, var, n_samples)
# Create a date range for the index
df0 = pd.date_range(periods=n_samples, freq='T', end=dt.datetime.today())
# Create a DataFrame with the price changes
X = pd.Series(i, index=df0, name="close").to_frame()
# Apply the cumulative sum to the price changes and add the start price
X['close'] = X['close'].cumsum() + start_price
# Plot the line chart of the cumulative price data
X.plot.line()
return X
@netpi hey sorry for the reply. Thanks for the correction!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
synthetic data for new quants