Last active
November 19, 2020 01:49
-
-
Save brookisme/8f9f06286251af02bb9372fc35bb7fd8 to your computer and use it in GitHub Desktop.
PyTorch and Numpy Confusion Matrix, Precision, Recall
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# CONFIG | |
# | |
BETA=2 | |
RETURN_CMATRIX=True | |
INVALID_ZERO_DIVISON=False | |
VALID_ZERO_DIVISON=1.0 | |
# | |
# METHODS | |
# | |
def confusion_matrix(target,prediction,value,ignore_value=None): | |
true=(target==prediction) | |
false=(~true) | |
pos=(target==value) | |
neg=(~pos) | |
keep=(target!=ignore_value) | |
tp=(true*pos).sum() | |
fp=(false*pos*keep).sum() | |
fn=(false*neg*keep).sum() | |
tn=(true*neg).sum() | |
return _get_items(tp, fp, fn, tn) | |
def precision(tp,fp,fn): | |
return _precision_recall(tp,fp,fn) | |
def recall(tp,fn,fp): | |
return _precision_recall(tp,fn,fp) | |
def fbeta(p,r,beta=BETA): | |
if p is None: p=precision(tp,fp) | |
if r is None: r=recall(tp,fn) | |
beta_sq=beta**2 | |
numerator=(beta_sq*p + r) | |
if numerator: | |
return (1+beta_sq)*(p*r)/numerator | |
else: | |
return 0 | |
def stats( | |
target, | |
prediction, | |
value, | |
ignore_value=None, | |
beta=BETA, | |
return_cmatrix=RETURN_CMATRIX): | |
tp, fp, fn, tn=confusion_matrix( | |
target, | |
prediction, | |
value, | |
ignore_value=ignore_value) | |
p=precision(tp,fp,fn) | |
r=recall(tp,fn,fp) | |
stat_values=[p,r] | |
if not _is_false(beta): | |
stat_values.append(fbeta(p,r,beta=beta)) | |
if return_cmatrix: | |
stat_values+=[tp, fp, fn, tn] | |
return stat_values | |
# | |
# INTERNAL | |
# | |
def _precision_recall(a,b,c): | |
if (a+b): | |
return a/(a+b) | |
else: | |
if c: | |
return INVALID_ZERO_DIVISON | |
else: | |
return VALID_ZERO_DIVISON | |
def _is_false(value): | |
return value in [False,None] | |
def _get_items(*args): | |
try: | |
return list(map(lambda s: s.item(),args)) | |
except: | |
return args | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment