Last active
June 10, 2018 15:54
-
-
Save caioaao/28bf77e9a95ae6b70b14141feacb1f84 to your computer and use it in GitHub Desktop.
Simple sklearn-compatible class to stack models
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.base import BaseEstimator, TransformerMixin | |
from sklearn.model_selection import cross_val_predict | |
from sklearn.pipeline import make_union | |
from sklearn.model_selection._split import check_cv | |
from sklearn.utils.validation import check_X_y | |
class BlendedClassifierTransformer(BaseEstimator, TransformerMixin): | |
def __init__(self, clf, cv=3): | |
self.clf = clf | |
self.cv = cv | |
def fit(self, *args, **kwargs): | |
self.clf = self.clf.fit(*args, **kwargs) | |
return self | |
def transform(self, *args, **kwargs): | |
return self.clf.predict_proba(*args, **kwargs) | |
def fit_transform(self, X, y): | |
preds = cross_val_predict(self.clf, X, y, cv=self.cv, method='predict_proba') | |
self.clf.fit(X, y) | |
return preds | |
def make_stack_layer(*clfs): | |
""" | |
Wrap around make_union that just wraps every class with | |
`BlendedClassifierTransformer` | |
""" | |
return make_union(*[BlendedClassifierTransformer(clf) for clf in clfs]) | |
# Example usage: | |
from sklearn.pipeline import make_pipeline | |
from stacking import make_stack_layer | |
stack_layer = make_stack_layer(RandomForest(), | |
LinearSVM()) | |
clf = make_pipeline(stack_layer, LogisticRegression()) | |
# then the model can be used just like a regular model | |
clf.fit(Xtrain,ytrain) | |
clf.predict_proba(Xtest) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment