I hereby claim:
- I am ccwang002 on github.
- I am liang2 (https://keybase.io/liang2) on keybase.
- I have a public key ASA_ZHu4l91A5bKbiWrZkL-zyJD9mvEUNQpsaW3LjmvcqQo
To claim this, I am signing this object:
"""Find the possible Ensembl releases of the given IDs. | |
The script uses Ensembl Tark APIs to subset the possible Ensembl releases | |
that cover all the given Ensembl IDs. Usually it can pinpoint the right release | |
using less than 30 IDs. Feeding more IDs may exceed the API call rate limit. | |
Known issues: | |
* The API doesn't handle ENSGR (chrY PAR genes) | |
""" | |
import argparse |
Gene | Cancer | Tumor suppressor or oncogene prediction (by 20/20+) | Decision | Tissue Frequency | Pancan Frequency | Consensus Score | Correlation adusted score | Novel | Rescue Notes | Note about previous publication | |
---|---|---|---|---|---|---|---|---|---|---|---|
ARID1A | CHOL | official | 11.76% | 6.69% | 2.5 | 1.80 | 0 | Found in 28297679 | |||
BAP1 | CHOL | tsg | official | 17.65% | 2.14% | 3.5 | 2.80 | 0 | Found in 28297679 | ||
EPHA2 | CHOL | tsg | official | 11.76% | 1.58% | 2.5 | 2.50 | 0 | 0 | ||
IDH1 | CHOL | oncogene | official | 14.71% | 5.56% | 4.5 | 3.80 | 0 | Found in 28297679 | ||
PBRM1 | CHOL | tsg | official | 17.65% | 3.73% | 3.5 | 2.32 | 0 | 0 |
from itertools import combinations, product | |
def gen_pos_sets_to_sub(barcode, max_sub=1): | |
""" | |
Generate all the possible position combinations (sets) within | |
the given maximal number of substitutions. | |
Examples: |
from pathlib import Path | |
from snakemake.remote.GS import RemoteProvider as GSRemoteProvider | |
GS = GSRemoteProvider() | |
GS_PREFIX = "lbwang-playground/snakemake_rnaseq" | |
GENOME_FA = GS.remote(f"{GS_PREFIX}/griffithlab_brain_vs_uhr/GRCh38_Ens87_chr22_ERCC/chr22_ERCC92.fa") | |
GENOME_GTF = GS.remote(f"{GS_PREFIX}/griffithlab_brain_vs_uhr/GRCh38_Ens87_chr22_ERCC/genes_chr22_ERCC92.gtf") | |
HISAT2_INDEX_PREFIX = "hisat2_index/chr22_ERCC92" | |
FULL_HISAT2_INDEX_PREFIX = "dinglab/lbwang/snakemake_demo/hisat2_index/chr22_ERCC92" |
# The Snakefile that loads raw data and genome reference locally | |
GENOME_FA = "griffithlab_brain_vs_uhr/GRCh38_Ens87_chr22_ERCC/chr22_ERCC92.fa" | |
GENOME_GTF = "griffithlab_brain_vs_uhr/GRCh38_Ens87_chr22_ERCC/genes_chr22_ERCC92.gtf" | |
HISAT2_INDEX_PREFIX = "hisat2_index/chr22_ERCC92" | |
SAMPLES, *_ = glob_wildcards('griffithlab_brain_vs_uhr/HBR_UHR_ERCC_ds_10pc/{sample}.read1.fastq.gz') | |
from pathlib import Path |
import pandas as pd | |
import os | |
from pathlib import Path | |
# Export Zotero library as CSV | |
ZOTERO_LIBRARY_PTH = '/Users/liang/Desktop/My Library.csv' | |
REFERENCES_ROOT = Path('/Users/liang/Dropbox/References/') | |
df = pd.read_csv(ZOTERO_LIBRARY_PTH) |
I hereby claim:
To claim this, I am signing this object:
from datetime import datetime | |
from pytz import timezone # pip install pytz | |
# Setup remote time | |
remote_tz = timezone('US/Pacific') # PST for example | |
remote_dt = remote_tz.localize(datetime(2015, 5, 1, 14, 0)) # May 1, 2015 PM2:00 PST | |
# Setup Taipei local time | |
tpe = timezone('Asia/Taipei') |
import numpy as np | |
rs = np.random.RandomState(seed=5566) | |
n_conditions = 10 | |
# Here we simulate a complex computation, for example, analogy of the magnitude | |
# of gradient decent which expects to be strictly positive. But from the result | |
# we find that it seems to be sometimes negative, we wish to find out when and | |
# what condition our program produces bogus ouput. | |
# | |
# This is the case to use pdb and condition break point |
[TOC]
亮亮(@ccwang002)| Mar, 2015 | CC 3.0 BY license
如果內容有誤,你可以用任何管道發訊息轟炸我,或用底下的 gist comment 留言。
每個檔案都會是一個主題,主題底下會列出一些資源。資源的最後會有一個學習目標,方便讓你評估自己學到什麼程度。學習目標會給一個明確的任務,我盡量讓它能跟(宅宅的)日常生活結合。通常只要完成前一、二個目標就行了,這也不是功課所以不一定要給我看。如果你不介意給我看,我會分享我主觀的建議,但大部份的任務是沒有絕對的正確答案。只要能解決問題都是好方法。