Skip to content

Instantly share code, notes, and snippets.

@charlesbmi
Last active December 11, 2020 04:52
Show Gist options
  • Save charlesbmi/abb06372e44f1104fc25fa86ec6e9e6c to your computer and use it in GitHub Desktop.
Save charlesbmi/abb06372e44f1104fc25fa86ec6e9e6c to your computer and use it in GitHub Desktop.
import tensorflow as tf
# Hyperparameters
INPUT_DIM = 2 # Same as decoder output dimension
HIDDEN_DIM = 30
LATENT_DIM = 2
# Encodes input to low-dimensional code
encoder = tf.keras.Sequential(
[
tf.keras.layers.Dense(HIDDEN_DIM, activation=tf.nn.relu, name='encoder_hidden'),
tf.keras.layers.Dense(LATENT_DIM, activation=tf.nn.sigmoid, name='code')
],
name='encoder'
)
# Decodes from low-dimensional code to output
decoder = tf.keras.Sequential(
[
tf.keras.layers.Dense(HIDDEN_DIM, activation=tf.nn.relu, name='decoder_hidden'),
tf.keras.layers.Dense(INPUT_DIM, activation=tf.keras.activations.linear, name='decoder_output_flat'),
],
name='decoder'
)
# Linear dynamics `K`
linear_dynamics = tf.keras.Sequential(
[
tf.keras.layers.Dense(LATENT_DIM, activation='linear', name='linear_dynamics')
],
name='linear_dynamics'
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment