Created
November 20, 2019 13:44
-
-
Save chrischoy/b68c426362ae28a96ad22183d0e2b174 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright (c) Chris Choy ([email protected]). | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy of | |
# this software and associated documentation files (the "Software"), to deal in | |
# the Software without restriction, including without limitation the rights to | |
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies | |
# of the Software, and to permit persons to whom the Software is furnished to do | |
# so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# | |
# Please cite "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural | |
# Networks", CVPR'19 (https://arxiv.org/abs/1904.08755) if you use any part | |
# of the code. | |
import os | |
import argparse | |
import numpy as np | |
from urllib.request import urlretrieve | |
try: | |
import open3d as o3d | |
except ImportError: | |
raise ImportError( | |
'Please install open3d with `pip install open3d`.') | |
import torch | |
import MinkowskiEngine as ME | |
from models.res16unet import Res16UNet34C | |
from config import get_config | |
CLASS_LABELS = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', | |
'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', | |
'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', | |
'bathtub', 'otherfurniture') | |
VALID_CLASS_IDS = [ | |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39 | |
] | |
SCANNET_COLOR_MAP = { | |
0: (0., 0., 0.), | |
1: (174., 199., 232.), | |
2: (152., 223., 138.), | |
3: (31., 119., 180.), | |
4: (255., 187., 120.), | |
5: (188., 189., 34.), | |
6: (140., 86., 75.), | |
7: (255., 152., 150.), | |
8: (214., 39., 40.), | |
9: (197., 176., 213.), | |
10: (148., 103., 189.), | |
11: (196., 156., 148.), | |
12: (23., 190., 207.), | |
14: (247., 182., 210.), | |
15: (66., 188., 102.), | |
16: (219., 219., 141.), | |
17: (140., 57., 197.), | |
18: (202., 185., 52.), | |
19: (51., 176., 203.), | |
20: (200., 54., 131.), | |
21: (92., 193., 61.), | |
22: (78., 71., 183.), | |
23: (172., 114., 82.), | |
24: (255., 127., 14.), | |
25: (91., 163., 138.), | |
26: (153., 98., 156.), | |
27: (140., 153., 101.), | |
28: (158., 218., 229.), | |
29: (100., 125., 154.), | |
30: (178., 127., 135.), | |
32: (146., 111., 194.), | |
33: (44., 160., 44.), | |
34: (112., 128., 144.), | |
35: (96., 207., 209.), | |
36: (227., 119., 194.), | |
37: (213., 92., 176.), | |
38: (94., 106., 211.), | |
39: (82., 84., 163.), | |
40: (100., 85., 144.), | |
} | |
def load_file(file_name, voxel_size): | |
pcd = o3d.io.read_point_cloud(file_name) | |
coords = np.array(pcd.points) | |
feats = np.array(pcd.colors) | |
quantized_coords = np.floor(coords / voxel_size) | |
inds = ME.utils.sparse_quantize(quantized_coords) | |
return quantized_coords[inds], feats[inds], pcd | |
def generate_input_sparse_tensor(file_name, voxel_size=0.05): | |
# Create a batch, this process is done in a data loader during training in parallel. | |
batch = [load_file(file_name, voxel_size)] | |
coordinates_, featrues_, pcds = list(zip(*batch)) | |
coordinates, features = ME.utils.sparse_collate(coordinates_, featrues_) | |
# Normalize features and create a sparse tensor | |
return ME.SparseTensor(features - 0.5, coords=coordinates).to(device) | |
if __name__ == '__main__': | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
config = get_config() | |
# Define a model and load the weights | |
model = Res16UNet34C(3, 20, config).to(device) | |
model_dict = torch.load(config.weights) | |
model.load_state_dict(model_dict['state_dict']) | |
model.eval() | |
# Measure time | |
for voxel_size in [0.02]: | |
sinput = generate_input_sparse_tensor( | |
'1.ply', voxel_size=voxel_size) | |
# Feed-forward pass and get the prediction | |
soutput = model(sinput) | |
# Feed-forward pass and get the prediction | |
_, pred = soutput.F.max(1) | |
pred = pred.cpu().numpy() | |
# Map color | |
colors = np.array([SCANNET_COLOR_MAP[VALID_CLASS_IDS[l]] for l in pred]) | |
# Create a point cloud file | |
pred_pcd = o3d.geometry.PointCloud() | |
coordinates = soutput.C.numpy()[:, :3] # last column is the batch index | |
pred_pcd.points = o3d.utility.Vector3dVector(coordinates * 0.02) | |
pred_pcd.colors = o3d.utility.Vector3dVector(colors / 255) | |
# Move the original point cloud | |
pcd = o3d.io.read_point_cloud('1.ply') | |
pcd.points = o3d.utility.Vector3dVector(np.array(pcd.points) + np.array([0, 5, 0])) | |
# Visualize the input point cloud and the prediction | |
o3d.visualization.draw_geometries([pcd, pred_pcd]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment