Created
August 8, 2021 12:59
-
-
Save christianarielli/f055147c5752ea2db52a359325baf45a to your computer and use it in GitHub Desktop.
Tile System math for the Spherical Mercator projection coordinate system (EPSG:3857)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
```csharp | |
using System; | |
using System.Text; | |
namespace AzureMaps | |
{ | |
/// <summary> | |
/// Tile System math for the Spherical Mercator projection coordinate system (EPSG:3857) | |
/// </summary> | |
public static class TileMath | |
{ | |
//Earth radius in meters. | |
private const double EarthRadius = 6378137; | |
private const double MinLatitude = -85.05112878; | |
private const double MaxLatitude = 85.05112878; | |
private const double MinLongitude = -180; | |
private const double MaxLongitude = 180; | |
/// <summary> | |
/// Clips a number to the specified minimum and maximum values. | |
/// </summary> | |
/// <param name="n">The number to clip.</param> | |
/// <param name="minValue">Minimum allowable value.</param> | |
/// <param name="maxValue">Maximum allowable value.</param> | |
/// <returns>The clipped value.</returns> | |
private static double Clip(double n, double minValue, double maxValue) | |
{ | |
return Math.Min(Math.Max(n, minValue), maxValue); | |
} | |
/// <summary> | |
/// Calculates width and height of the map in pixels at a specific zoom level from -180 degrees to 180 degrees. | |
/// </summary> | |
/// <param name="zoom">Zoom Level to calculate width at</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <returns>Width and height of the map in pixels</returns> | |
public static double MapSize(double zoom, int tileSize) | |
{ | |
return Math.Ceiling(tileSize * Math.Pow(2, zoom)); | |
} | |
/// <summary> | |
/// Calculates the Ground resolution at a specific degree of latitude in meters per pixel. | |
/// </summary> | |
/// <param name="latitude">Degree of latitude to calculate resolution at</param> | |
/// <param name="zoom">Zoom level to calculate resolution at</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <returns>Ground resolution in meters per pixels</returns> | |
public static double GroundResolution(double latitude, double zoom, int tileSize) | |
{ | |
latitude = Clip(latitude, MinLatitude, MaxLatitude); | |
return Math.Cos(latitude * Math.PI / 180) * 2 * Math.PI * EarthRadius / MapSize(zoom, tileSize); | |
} | |
/// <summary> | |
/// Determines the map scale at a specified latitude, level of detail, and screen resolution. | |
/// </summary> | |
/// <param name="latitude">Latitude (in degrees) at which to measure the map scale.</param> | |
/// <param name="zoom">Level of detail, from 1 (lowest detail) to 23 (highest detail).</param> | |
/// <param name="screenDpi">Resolution of the screen, in dots per inch.</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <returns>The map scale, expressed as the denominator N of the ratio 1 : N.</returns> | |
public static double MapScale(double latitude, double zoom, int screenDpi, int tileSize) | |
{ | |
return GroundResolution(latitude, zoom, tileSize) * screenDpi / 0.0254; | |
} | |
/// <summary> | |
/// Global Converts a Pixel coordinate into a geospatial coordinate at a specified zoom level. | |
/// Global Pixel coordinates are relative to the top left corner of the map (90, -180) | |
/// </summary> | |
/// <param name="pixel">Pixel coordinates in the format of [x, y].</param> | |
/// <param name="zoom">Zoom level</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <returns>A position value in the format [longitude, latitude].</returns> | |
public static double[] GlobalPixelToPosition(double[] pixel, double zoom, int tileSize) | |
{ | |
var mapSize = MapSize(zoom, tileSize); | |
var x = (Clip(pixel[0], 0, mapSize - 1) / mapSize) - 0.5; | |
var y = 0.5 - (Clip(pixel[1], 0, mapSize - 1) / mapSize); | |
return new double[] { | |
360 * x, //Longitude | |
90 - 360 * Math.Atan(Math.Exp(-y * 2 * Math.PI)) / Math.PI //Latitude | |
}; | |
} | |
/// <summary> | |
/// Converts a point from latitude/longitude WGS-84 coordinates (in degrees) into pixel XY coordinates at a specified level of detail. | |
/// </summary> | |
/// <param name="position">Position coordinate in the format [longitude, latitude]</param> | |
/// <param name="zoom">Zoom level.</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <returns>A global pixel coordinate.</returns> | |
public static double[] PositionToGlobalPixel(double[] position, int zoom, int tileSize) | |
{ | |
var latitude = Clip(position[1], MinLatitude, MaxLatitude); | |
var longitude = Clip(position[0], MinLongitude, MaxLongitude); | |
var x = (longitude + 180) / 360; | |
var sinLatitude = Math.Sin(latitude * Math.PI / 180); | |
var y = 0.5 - Math.Log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * Math.PI); | |
var mapSize = MapSize(zoom, tileSize); | |
return new double[] { | |
Clip(x * mapSize + 0.5, 0, mapSize - 1), | |
Clip(y * mapSize + 0.5, 0, mapSize - 1) | |
}; | |
} | |
/// <summary> | |
/// Converts pixel XY coordinates into tile XY coordinates of the tile containing the specified pixel. | |
/// </summary> | |
/// <param name="pixel">Pixel coordinates in the format of [x, y].</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <param name="tileX">Output parameter receiving the tile X coordinate.</param> | |
/// <param name="tileY">Output parameter receiving the tile Y coordinate.</param> | |
public static void GlobalPixelToTileXY(double[] pixel, int tileSize, out int tileX, out int tileY) | |
{ | |
tileX = (int)(pixel[0] / tileSize); | |
tileY = (int)(pixel[1] / tileSize); | |
} | |
/// <summary> | |
/// Performs a scale transform on a global pixel value from one zoom level to another. | |
/// </summary> | |
/// <param name="pixel">Pixel coordinates in the format of [x, y].</param> | |
/// <param name="oldZoom">The zoom level in which the input global pixel value is from.</param> | |
/// <returns>A scale pixel coordinate.</returns> | |
public static double[] ScaleGlobalPixel(double[] pixel, double oldZoom, double newZoom) | |
{ | |
var scale = Math.Pow(2, oldZoom - newZoom); | |
return new double[] { pixel[0] * scale, pixel[1] * scale }; | |
} | |
/// <summary> | |
/// Performs a scale transform on a set of global pixel values from one zoom level to another. | |
/// </summary> | |
/// <param name="pixels">A set of global pixel value from the old zoom level. Points are in the format [x,y].</param> | |
/// <param name="oldZoom">The zoom level in which the input global pixel values is from.</param> | |
/// <param name="newZoom">The new zoom level in which the output global pixel values should be aligned with.</param> | |
/// <returns>A set of global pixel values that has been scaled for the new zoom level.</returns> | |
public static double[][] ScaleGlobalPixels(double[][] pixels, double oldZoom, double newZoom) | |
{ | |
var scale = Math.Pow(2, oldZoom - newZoom); | |
var output = new System.Collections.Generic.List<double[]>(); | |
foreach (var p in pixels) | |
{ | |
output.Add(new double[] { p[0] * scale, p[1] * scale }); | |
} | |
return output.ToArray(); | |
} | |
/// <summary> | |
/// Converts tile XY coordinates into a global pixel XY coordinates of the upper-left pixel of the specified tile. | |
/// </summary> | |
/// <param name="tileX">Tile X coordinate.</param> | |
/// <param name="tileY">Tile Y coordinate.</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <param name="pixelX">Output parameter receiving the X coordinate of the point, in pixels.</param> | |
/// <param name="pixelY">Output parameter receiving the Y coordinate of the point, in pixels.</param> | |
public static double[] TileXYToGlobalPixel(int tileX, int tileY, int tileSize) | |
{ | |
return new double[] { tileX * tileSize, tileY * tileSize }; | |
} | |
/// <summary> | |
/// Converts tile XY coordinates into a quadkey at a specified level of detail. | |
/// </summary> | |
/// <param name="tileX">Tile X coordinate.</param> | |
/// <param name="tileY">Tile Y coordinate.</param> | |
/// <param name="zoom">Zoom level</param> | |
/// <returns>A string containing the quadkey.</returns> | |
public static string TileXYToQuadKey(int tileX, int tileY, int zoom) | |
{ | |
var quadKey = new StringBuilder(); | |
for (int i = zoom; i > 0; i--) | |
{ | |
char digit = '0'; | |
int mask = 1 << (i - 1); | |
if ((tileX & mask) != 0) | |
{ | |
digit++; | |
} | |
if ((tileY & mask) != 0) | |
{ | |
digit++; | |
digit++; | |
} | |
quadKey.Append(digit); | |
} | |
return quadKey.ToString(); | |
} | |
/// <summary> | |
/// Converts a quadkey into tile XY coordinates. | |
/// </summary> | |
/// <param name="quadKey">Quadkey of the tile.</param> | |
/// <param name="tileX">Output parameter receiving the tile X coordinate.</param> | |
/// <param name="tileY">Output parameter receiving the tile Y coordinate.</param> | |
/// <param name="zoom">Output parameter receiving the zoom level.</param> | |
public static void QuadKeyToTileXY(string quadKey, out int tileX, out int tileY, out int zoom) | |
{ | |
tileX = tileY = 0; | |
zoom = quadKey.Length; | |
for (int i = zoom; i > 0; i--) | |
{ | |
int mask = 1 << (i - 1); | |
switch (quadKey[zoom - i]) | |
{ | |
case '0': | |
break; | |
case '1': | |
tileX |= mask; | |
break; | |
case '2': | |
tileY |= mask; | |
break; | |
case '3': | |
tileX |= mask; | |
tileY |= mask; | |
break; | |
default: | |
throw new ArgumentException("Invalid QuadKey digit sequence."); | |
} | |
} | |
} | |
/// <summary> | |
/// Calculates the XY tile coordinates that a coordinate falls into for a specific zoom level. | |
/// </summary> | |
/// <param name="position">Position coordinate in the format [longitude, latitude]</param> | |
/// <param name="zoom">Zoom level</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <param name="tileX">Output parameter receiving the tile X position.</param> | |
/// <param name="tileY">Output parameter receiving the tile Y position.</param> | |
public static void PositionToTileXY(double[] position, int zoom, int tileSize, out int tileX, out int tileY) | |
{ | |
var latitude = Clip(position[1], MinLatitude, MaxLatitude); | |
var longitude = Clip(position[0], MinLongitude, MaxLongitude); | |
var x = (longitude + 180) / 360; | |
var sinLatitude = Math.Sin(latitude * Math.PI / 180); | |
var y = 0.5 - Math.Log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * Math.PI); | |
//tileSize needed in calculations as in rare cases the multiplying/rounding/dividing can make the difference of a pixel which can result in a completely different tile. | |
var mapSize = MapSize(zoom, tileSize); | |
tileX = (int)Math.Floor(Clip(x * mapSize + 0.5, 0, mapSize - 1) / tileSize); | |
tileY = (int)Math.Floor(Clip(y * mapSize + 0.5, 0, mapSize - 1) / tileSize); | |
} | |
/// <summary> | |
/// Calculates the tile quadkey strings that are within a specified viewport. | |
/// </summary> | |
/// <param name="position">Position coordinate in the format [longitude, latitude]</param> | |
/// <param name="zoom">Zoom level</param> | |
/// <param name="width">The width of the map viewport in pixels.</param> | |
/// <param name="height">The height of the map viewport in pixels.</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <returns>A list of quadkey strings that are within the specified viewport.</returns> | |
public static string[] GetQuadkeysInView(double[] position, int zoom, int width, int height, int tileSize) | |
{ | |
var p = PositionToGlobalPixel(position, zoom, tileSize); | |
var top = p[1] - height * 0.5; | |
var left = p[0] - width * 0.5; | |
var bottom = p[1] + height * 0.5; | |
var right = p[0] + width * 0.5; | |
var tl = GlobalPixelToPosition(new double[] { left, top }, zoom, tileSize); | |
var br = GlobalPixelToPosition(new double[] { right, bottom }, zoom, tileSize); | |
//Boudning box in the format: [west, south, east, north]; | |
var bounds = new double[] { tl[0], br[1], br[0], tl[1] }; | |
return GetQuadkeysInBoundingBox(bounds, zoom, tileSize); | |
} | |
/// <summary> | |
/// Calculates the tile quadkey strings that are within a bounding box at a specific zoom level. | |
/// </summary> | |
/// <param name="bounds">A bounding box defined as an array of numbers in the format of [west, south, east, north].</param> | |
/// <param name="zoom">Zoom level to calculate tiles for.</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <returns>A list of quadkey strings.</returns> | |
public static string[] GetQuadkeysInBoundingBox(double[] bounds, int zoom, int tileSize) | |
{ | |
var keys = new System.Collections.Generic.List<string>(); | |
if (bounds != null && bounds.Length >= 4) | |
{ | |
PositionToTileXY(new double[] { bounds[3], bounds[0] }, zoom, tileSize, out int tlX, out int tlY); | |
PositionToTileXY(new double[] { bounds[1], bounds[2] }, zoom, tileSize, out int brX, out int brY); | |
for (int x = tlX; x <= brX; x++) | |
{ | |
for (int y = tlY; y <= brY; y++) | |
{ | |
keys.Add(TileXYToQuadKey(x, y, zoom)); | |
} | |
} | |
} | |
return keys.ToArray(); | |
} | |
/// <summary> | |
/// Calculates the bounding box of a tile. | |
/// </summary> | |
/// <param name="tileX">Tile X coordinate</param> | |
/// <param name="tileY">Tile Y coordinate</param> | |
/// <param name="zoom">Zoom level</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <returns>A bounding box of the tile defined as an array of numbers in the format of [west, south, east, north].</returns> | |
public static double[] TileXYToBoundingBox(int tileX, int tileY, double zoom, int tileSize) | |
{ | |
//Top left corner pixel coordinates | |
var x1 = (double)(tileX * tileSize); | |
var y1 = (double)(tileY * tileSize); | |
//Bottom right corner pixel coordinates | |
var x2 = (double)(x1 + tileSize); | |
var y2 = (double)(y1 + tileSize); | |
var nw = GlobalPixelToPosition(new double[] { x1, y1 }, zoom, tileSize); | |
var se = GlobalPixelToPosition(new double[] { x2, y2 }, zoom, tileSize); | |
return new double[] { nw[0], se[1], se[0], nw[1] }; | |
} | |
/// <summary> | |
/// Calculates the best map view (center, zoom) for a bounding box on a map. | |
/// </summary> | |
/// <param name="bounds">A bounding box defined as an array of numbers in the format of [west, south, east, north].</param> | |
/// <param name="mapWidth">Map width in pixels.</param> | |
/// <param name="mapHeight">Map height in pixels.</param> | |
/// <param name="padding">Width in pixels to use to create a buffer around the map. This is to keep markers from being cut off on the edge</param> | |
/// <param name="tileSize">The size of the tiles in the tile pyramid.</param> | |
/// <param name="latitude">Output parameter receiving the center latitude coordinate.</param> | |
/// <param name="longitude">Output parameter receiving the center longitude coordinate.</param> | |
/// <param name="zoom">Output parameter receiving the zoom level</param> | |
public static void BestMapView(double[] bounds, double mapWidth, double mapHeight, int padding, int tileSize, out double centerLat, out double centerLon, out double zoom) | |
{ | |
if (bounds == null || bounds.Length < 4) | |
{ | |
centerLat = 0; | |
centerLon = 0; | |
zoom = 1; | |
return; | |
} | |
double boundsDeltaX; | |
//Check if east value is greater than west value which would indicate that bounding box crosses the antimeridian. | |
if (bounds[2] > bounds[0]) | |
{ | |
boundsDeltaX = bounds[2] - bounds[0]; | |
centerLon = (bounds[2] + bounds[0]) / 2; | |
} | |
else | |
{ | |
boundsDeltaX = 360 - (bounds[0] - bounds[2]); | |
centerLon = ((bounds[2] + bounds[0]) / 2 + 360) % 360 - 180; | |
} | |
var ry1 = Math.Log((Math.Sin(bounds[1] * Math.PI / 180) + 1) / Math.Cos(bounds[1] * Math.PI / 180)); | |
var ry2 = Math.Log((Math.Sin(bounds[3] * Math.PI / 180) + 1) / Math.Cos(bounds[3] * Math.PI / 180)); | |
var ryc = (ry1 + ry2) / 2; | |
centerLat = Math.Atan(Math.Sinh(ryc)) * 180 / Math.PI; | |
var resolutionHorizontal = boundsDeltaX / (mapWidth - padding * 2); | |
var vy0 = Math.Log(Math.Tan(Math.PI * (0.25 + centerLat / 360))); | |
var vy1 = Math.Log(Math.Tan(Math.PI * (0.25 + bounds[3] / 360))); | |
var zoomFactorPowered = (mapHeight * 0.5 - padding) / (40.7436654315252 * (vy1 - vy0)); | |
var resolutionVertical = 360.0 / (zoomFactorPowered * tileSize); | |
var resolution = Math.Max(resolutionHorizontal, resolutionVertical); | |
zoom = Math.Log(360 / (resolution * tileSize), 2); | |
} | |
} | |
} | |
``` |
There seems to be a bug at line 108. The addition of
(0.5, 0.5)
would work for pixels where the origin is in the center of the pixel, but the methodGlobalPixelToPosition
however does not account for this.
The term (0.5 - Math.log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * Math.PI))
computes the y-coordinate in the Mercator projection. The 0.5
is used to transform the range from [-0.5, 0.5]
to [0, 1]
.
I was talking about this piece of code:
return new double[] {
Clip(x * mapSize + 0.5, 0, mapSize - 1),
Clip(y * mapSize + 0.5, 0, mapSize - 1)
};
https://gist.github.com/christianjunk/f055147c5752ea2db52a359325baf45a#file-tilemath-cs-L108
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
There seems to be a bug at line 108. The addition of
(0.5, 0.5)
would work for pixels where the origin is in the center of the pixel, but the methodGlobalPixelToPosition
however does not account for this.