Last active
November 6, 2017 23:30
-
-
Save cinjon/83548630c2e2f1fc382f109677bc0af5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
q_y = tf.contrib.distributions.RelaxedOneHotCategorical(tau, logits=a1_logits) | |
y = q_y.sample() | |
y_hard = tf.cast(tf.one_hot(tf.argmax(y, -1), output_size), y.dtype) | |
# append a zero out onto the back so that argmax doesn't use an incorrect indice. | |
one_hot = np.array([0]*(output_size - 1) + [1]).astype(np.float32) | |
concat_one_hot = tf.expand_dims(tf.expand_dims(tf.convert_to_tensor(one_hot), 0), 0) | |
concat_one_hot = tf.tile(concat_one_hot, tf.stack([tf.shape(y_hard)[0], 1, 1])) | |
concat_y_hard = tf.concat([y_hard, concat_one_hot], 1) | |
# we need to find the first message that's predicting a 2 and then zero out from there. | |
first_zeros = tf.argmax(tf.to_int32(tf.reduce_all(tf.equal(concat_y_hard, one_hot), 2)), 1) | |
mask = tf.to_float(tf.sequence_mask(first_zeros, num_binary_messages + 1)) | |
argmax_messages = ((tf.argmax(concat_y_hard, 2) + 1) * tf.to_int64(mask))[:, :num_binary_messages] | |
y_hard = tf.one_hot(argmax_messages, output_size) | |
messages = tf.stop_gradient(y_hard - y) + y |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment