Created
June 17, 2020 02:03
-
-
Save cinjon/e0a702a3f2a1a9dab0fb9b0904b467ee to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
import os | |
import random | |
import numpy as np | |
from PIL import Image | |
import torch | |
from torch.nn import functional as F | |
from torch.utils.data import IterableDataset | |
from torchvision.datasets.utils import download_url, download_and_extract_archive, extract_archive, \ | |
makedir_exist_ok, verify_str_arg | |
from torchvision.datasets.mnist import read_sn3_pascalvincent_tensor, read_image_file, read_label_file | |
from torchvision.transforms import Compose, Normalize, ToTensor | |
class DiverseMultiMNist(IterableDataset): | |
resources = [("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", | |
"f68b3c2dcbeaaa9fbdd348bbdeb94873"), | |
("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz", | |
"d53e105ee54ea40749a09fcbcd1e9432"), | |
("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", | |
"9fb629c4189551a2d022fa330f9573f3"), | |
("http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz", | |
"ec29112dd5afa0611ce80d1b7f02629c")] | |
training_file = 'training.pt' | |
test_file = 'test.pt' | |
classes = [ | |
'0 - zero', '1 - one', '2 - two', '3 - three', '4 - four', '5 - five', | |
'6 - six', '7 - seven', '8 - eight', '9 - nine' | |
] | |
def __init__(self, root, train=True, download=False, batch_size=None): | |
super(DiverseMultiMNist, self).__init__() | |
self.root = root | |
self.train = train | |
if download: | |
self.download() | |
self._transforms = Compose( | |
[ToTensor(), Normalize((0.1307,), (0.3081,))]) | |
self._batch_size = batch_size | |
data_file = self.training_file if train else self.test_file | |
self.data, self.targets = torch.load( | |
os.path.join(self.processed_folder, data_file)) | |
self.num_images = len(self.data) | |
data_by_label = defaultdict(list) | |
for datum, target in zip(self.data, self.targets): | |
data_by_label[target.item()].append(datum) | |
self.data_by_label = data_by_label | |
del self.targets | |
del self.data | |
@property | |
def raw_folder(self): | |
return os.path.join(self.root, self.__class__.__name__, 'raw') | |
@property | |
def processed_folder(self): | |
return os.path.join(self.root, self.__class__.__name__, 'processed') | |
def _check_exists(self): | |
return (os.path.exists( | |
os.path.join(self.processed_folder, self.training_file)) and | |
os.path.exists( | |
os.path.join(self.processed_folder, self.test_file))) | |
def download(self): | |
"""Download the MNIST data if it doesn't exist in processed_folder already.""" | |
if self._check_exists(): | |
return | |
makedir_exist_ok(self.raw_folder) | |
makedir_exist_ok(self.processed_folder) | |
# download files | |
for url, md5 in self.resources: | |
filename = url.rpartition('/')[2] | |
download_and_extract_archive(url, | |
download_root=self.raw_folder, | |
filename=filename, | |
md5=md5) | |
# process and save as torch files | |
print('Processing...') | |
training_set = (read_image_file( | |
os.path.join(self.raw_folder, 'train-images-idx3-ubyte')), | |
read_label_file( | |
os.path.join(self.raw_folder, | |
'train-labels-idx1-ubyte'))) | |
test_set = (read_image_file( | |
os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')), | |
read_label_file( | |
os.path.join(self.raw_folder, | |
't10k-labels-idx1-ubyte'))) | |
with open(os.path.join(self.processed_folder, self.training_file), | |
'wb') as f: | |
torch.save(training_set, f) | |
with open(os.path.join(self.processed_folder, self.test_file), | |
'wb') as f: | |
torch.save(test_set, f) | |
print('Done!') | |
def __iter__(self): | |
worker_info = torch.utils.data.get_worker_info() | |
if not worker_info: | |
self.my_data_indices = { | |
k: list(range(len(v))) for k, v in self.data_by_label.items() | |
} | |
else: | |
per_worker = { | |
k: int(len(v) / worker_info.num_workers) | |
for k, v in self.data_by_label.items() | |
} | |
my_id = worker_info.id | |
self.my_data_indices = { | |
k: [v * my_id, v * (my_id + 1)] for k, v in per_worker.items() | |
} | |
return self | |
def __next__(self): | |
""" | |
Returns: | |
tuple: (image, target) where target is index of the target class. | |
""" | |
target1, target2 = np.random.choice(10, size=2, replace=False) | |
indices1 = self.my_data_indices[target1] | |
indices2 = self.my_data_indices[target2] | |
index1 = np.random.choice(list(range(*indices1)), size=1)[0] | |
index2 = np.random.choice(list(range(*indices2)), size=1)[0] | |
img1 = self.data_by_label[target1][index1].numpy() | |
img2 = self.data_by_label[target2][index2].numpy() | |
# Random translations. | |
tx1, tx2, ty1, ty2 = np.random.choice(range(-4, 5), | |
size=4, | |
replace=True) | |
h, w = img1.shape | |
padded_img1 = np.zeros((h + 8, w + 8), img1.dtype) | |
padded_img1[4 - tx1:h + 4 - tx1, 4 - ty1:w + 4 - ty1] = img1 | |
padded_img2 = np.zeros((h + 8, w + 8), img2.dtype) | |
padded_img2[4 - tx2:h + 4 - tx2, 4 - ty2:w + 4 - ty2] = img2 | |
target = torch.zeros(10) | |
target_indices = [target1] | |
if random.random() < 1. / 6: | |
img = padded_img1.astype(np.uint8) | |
else: | |
img = (0.5 * padded_img1 + 0.5 * padded_img2).astype(np.uint8) | |
target_indices.append(target2) | |
target_indices = torch.tensor(target_indices) | |
target.scatter_(0, target_indices, 1.) | |
img = Image.fromarray(img, mode='L') | |
img = self._transforms(img) | |
# Repeat so that we have a 3 channel RGB image. | |
img = img.repeat(3, 1, 1) | |
return img, target | |
def __len__(self): | |
return int(self.num_images / self._batch_size) + 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment