-
-
Save cnd/f8fc3c27c8951038c0ce2f1759dce1f5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def grad_cam(input_model, model_x, orig_x, category_index, layer_name, class_names): | |
output = input_model.output | |
final_layer = Lambda(lambda x: target_category_loss(x, category_index, len(class_names))) | |
output = final_layer(output) | |
model = Model(inputs=input_model.input, outputs=output) | |
loss = K.sum(model.layers[-1].output) | |
conv_output = model.get_layer(layer_name).output | |
grads = normalize(K.gradients(loss, conv_output)[0]) | |
gradient_function = K.function([model.layers[0].input, K.learning_phase()], [conv_output, grads]) | |
output, grads_val = gradient_function([model_x, 0]) | |
output, grads_val = output[0, :], grads_val[0, :, :, :] | |
weights = np.mean(grads_val, axis=(0, 1)) | |
cam = np.zeros(output.shape[0: 2], dtype=np.float32) | |
for i, w in enumerate(weights): | |
cam += w * output[:, :, i] | |
cam = np.maximum(cam, np.zeros(output.shape[0: 2], dtype=np.float32)) | |
cam = cam.squeeze() | |
cam = cv2.applyColorMap(np.uint8(255 * cam / np.max(cam)), cv2.COLORMAP_JET) | |
cam = cv2.resize(cam, (np.shape(orig_x)[0], np.shape(orig_x)[1])) | |
cam = 0.4 * cam + 0.6 * orig_x | |
return np.uint8(cam) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment