Created
November 20, 2024 01:07
-
-
Save codyroux/63f42c6c798574492dff6adc5e011e81 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
mutual | |
inductive Subst : Type where | |
| ids : Subst | |
| tcons : Term → Subst → Subst | |
| shift : Subst | |
| comp : Subst → Subst → Subst | |
inductive Term : Type where | |
| var : Term | |
| lam : Term → Term | |
| app : Term → Term → Term | |
| sub : Term → Subst → Term | |
end | |
open Subst | |
open Term | |
notation "↑" => shift | |
notation t " ⬝ " σ => (tcons t σ) | |
notation σ:80 " ∘ " τ:80 => (comp σ τ) | |
notation t:70 " @ " u:70 => (app t u) | |
notation "Λ" => lam | |
notation t:60 "⟨" σ:60 "⟩" => (sub t σ) | |
inductive Ty where | |
| base : Ty | |
| arrow : Ty → Ty → Ty | |
open Ty | |
notation t " ⇒ " u:60 => (arrow t u) | |
notation "Ctx" => List Ty | |
set_option hygiene false | |
notation ctx₁:50 " ⊢ " sub:50 " :~ " ctx₂:50 => (TypeCtx ctx₁ sub ctx₂) | |
notation ctx:50 " ⊢ " t:50 " :+ " ty:50 => (TypeTerm ctx t ty) | |
mutual | |
inductive TypeCtx : Ctx → Subst → Ctx → Type where | |
| idTy : ∀ Γ, Γ ⊢ ids :~ Γ | |
| tconsTy : ∀ (Γ Δ : Ctx) A t σ, (Γ ⊢ t :+ A) → (Γ ⊢ σ :~ Δ) → Γ ⊢ t ⬝ σ :~ A :: Δ | |
| shiftTy : ∀ Γ A, (A :: Γ) ⊢ ↑ :~ Γ | |
| compTy : ∀ Γ Δ Ξ, Γ ⊢ σ :~ Δ → Δ ⊢ τ :~ Ξ → Γ ⊢ σ ∘ τ :~ Ξ | |
inductive TypeTerm : Ctx → Term → Ty → Type where | |
| varTy : ∀ Γ A, (A :: Γ) ⊢ var :+ A | |
| appTy : ∀ Γ A B t u, Γ ⊢ t :+ A ⇒ B → Γ ⊢ u :+ A → Γ ⊢ t @ u :+ B | |
| lamTy : ∀ Γ A t, (A :: Γ) ⊢ t :+ B → Γ ⊢ Λ t :+ A ⇒ B | |
| subTy : ∀ Γ Δ A t σ, Γ ⊢ σ :~ Δ → Δ ⊢ t :+ A → Γ ⊢ t⟨σ⟩ :+ A | |
end | |
infix:40 " ≅ " => SubstCong | |
infix:40 " ≃ " => TermCong | |
-- Taken from http://www.macs.hw.ac.uk/~fairouz/forest/papers/research-reports/Glasgow-TR-95-04.pdf | |
mutual | |
inductive SubstCong : Subst → Subst → Prop where | |
| idL : ids ∘ σ ≅ σ | |
| shiftId : ↑ ∘ (a ⬝ σ) ≅ σ | |
| mapS : (a ⬝ σ) ∘ τ ≅ a⟨τ⟩ ⬝ (σ ∘ τ) | |
| ass : (σ ∘ τ) ∘ ρ ≅ σ ∘ (τ ∘ ρ) | |
inductive TermCong : Term → Term → Prop where | |
| beta : (Λ a) @ b ≃ a⟨ tcons b ids ⟩ | |
| varId : var⟨ ids ⟩ ≃ var | |
| varCons : var⟨a ⬝ σ⟩ ≃ a | |
| appSubst : (a @ b)⟨ σ ⟩ ≃ a⟨σ⟩ @ b⟨σ⟩ | |
| absSubst : (Λ a)⟨σ⟩ ≃ Λ (a ⟨ var ⬝ (σ ∘ ↑)⟩) | |
| clos : a⟨σ⟩⟨τ⟩ ≃ a⟨σ ∘ τ⟩ | |
end | |
-- Now we need to extend this to actually be a congruence: go under each constructor and refl sym trans. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment