-
-
Save cyphunk/6c255fa05dd30e69f438a930faeb53fe to your computer and use it in GitHub Desktop.
softmax function implementation in js
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Fork & examples for the one-line version by @vladimir-ivanov: | |
//let softmax = (arr) => (index) => Math.exp(arr[index]) / arr.map(y => Math.exp(y)).reduce((a, b) => a + b); | |
// | |
// Also see comments for improvements | |
function softmax(arr) { | |
return arr.map(function(value,index) { | |
return Math.exp(value) / arr.map( function(y /*value*/){ return Math.exp(y) } ).reduce( function(a,b){ return a+b }) | |
}) | |
} | |
example1=[ 0.9780449271202087, | |
0.01590355671942234, | |
0.0019390975357964635, | |
0.0015482910675927997, | |
0.0012942816829308867, | |
0.0006004497990943491, | |
0.0004827099328394979, | |
0.0001868270628619939 ] | |
softmax1=softmax(example1) | |
example2= [ | |
{ prob: 0.32289665937423706, cat: '25_32' }, | |
{ prob: 0.15404804050922394, cat: '38_43' }, | |
{ prob: 0.03673655539751053, cat: '4_6' }, | |
{ prob: 0.01545996405184269, cat: '48_53' }, | |
{ prob: 0.011709162034094334, cat: '15_20' }, | |
{ prob: 0.008010754361748695, cat: '8_13' }, | |
{ last: true, prob: 0.0054732030257582664, cat: '60+' } ].map(function(v){return v.prob}) | |
softmax2=softmax(example2) | |
example3=[ { prob: 0.125, cat: '25_32' }, | |
{ prob: 0.125, cat: '38_43' }, | |
{ prob: 0.125, cat: '15_20' }, | |
{ prob: 0.125, cat: '8_13' }, | |
{ prob: 0.125, cat: '4_6' }, | |
{ prob: 0.125, cat: '48_53' }, | |
{ prob: 0.125, cat: '60+' }, | |
{ prob: 0.125, cat: '0_2' } ].map(function(v){return v.prob}) | |
softmax3=softmax(example3) |
More efficient version.
- Avoid using
Math.max(...arr)
which will causeRangeError: Maximum call stack size exceeded
- No need in additional loop to calculate denominator.
// data could be both array or object
function softmax(data, from = 0, to = data.length) {
let max = -Infinity; // Math.max(...data) vould crash on large array
for (let id = from; id < to; id++) {
if (max < data[id]) {
max = data[id];
}
}
// No need to use reduce, just sum the exps in the loop
let sumOfExp = 0;
const result = Array.isArray(data) ? [] : {};
for (let id = from; id < to; id++) {
result[id] = Math.exp(data[id] - max);
sumOfExp += result[id];
}
// Finally divide by the sum of exps
for (let id = from; id < to; id++) {
result[id] = result[id] / sumOfExp;
}
return result;
}
If you still want to use prettier version you could just replace Math.max(...arr)
with reduce
.
function softmax(logits) {
//find max in logits using reduce
const maxLogit = logits.reduce((a, b) => Math.max(a, b), -Infinity);
const scores = logits.map((l) => Math.exp(l - maxLogit));
const denom = scores.reduce((a, b) => a + b);
return scores.map((s) => s / denom);
}
By any chance, does anyone have an example of the softmax derivative ? Or is able to tell me if this one is correct:
function derivative(arr) {
const values = softmax(arr);
return arr.map((x, i) => {
return values[i] * (values[i] - (i === 0 ? 1 : 0));
});
}
Math.exp(x)
can grows fast, if you use very large number for x
, this may cause exponential overflows infinity
. For example,
Math.exp(1000)
will cause overflow. Here is the implementation that used by PyTorch, Tensorflow, Cuda
softmax(logits) {
const highest = Math.max(...logits);
const shifted = logits.map(score => Math.exp(score - highest));
const total = shifted.reduce((acc, val) => acc + val, 0);
return shifted.map(prob => prob / total);
}
Because the softmax formula is invariant under constant shifts, that means mathematically, subtracting the same value from all inputs doesn’t change the output
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Late to the party but here is my solution inspired by @enobufs's but without repeating the exponentiation.