Created
May 6, 2018 02:31
-
-
Save cyrilzakka/34c86f254590953ff19f4e41792ae748 to your computer and use it in GitHub Desktop.
Frozen Lake Environment (OpenAI Gym) Solution using a Genetic Algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import random | |
import time | |
import gym | |
from gym import wrappers | |
random.seed(1234) | |
np.random.seed(1234) | |
def generate_random_policy(): | |
# Generates a vector of shape (16,) with an action between 0 and 3 (inclusive) | |
return np.random.choice(4, size=((16))) | |
def evaluate_policy(env, policy, n_episodes=100): | |
total_rewards = 0.0 | |
for _ in range(n_episodes): | |
total_rewards += run_episode(env, policy) | |
return total_rewards / n_episodes | |
def run_episode(env, policy, n_episodes=100, render=False): | |
total_reward = 0 | |
s = env.reset() | |
for i in range(n_episodes): | |
if render: | |
env.render() | |
s, reward, done, _ = env.step(policy[s]) | |
total_reward += reward | |
if done: | |
break | |
return total_reward | |
def crossover(policy1, policy2): | |
new_policy = policy1.copy() | |
for i in range(16): | |
rand = np.random.uniform() | |
if rand > 0.5: | |
new_policy[i] = policy2[i] | |
return new_policy | |
def mutation(policy, p=0.05): | |
new_policy = policy.copy() | |
for i in range(16): | |
rand = np.random.uniform() | |
if rand < p: | |
new_policy[i] = np.random.choice(4) | |
return new_policy | |
if __name__ == '__main__': | |
env = gym.make('FrozenLake-v0') | |
env.seed(0) | |
## Policy search | |
n_policy = 100 | |
n_steps = 20 | |
start = time.time() | |
policy_pop = [gen_random_policy() for _ in range(n_policy)] | |
for idx in range(n_steps): | |
policy_scores = [evaluate_policy(env, p) for p in policy_pop] | |
print('Generation %d : max score = %0.2f' %(idx+1, max(policy_scores))) | |
policy_ranks = list(reversed(np.argsort(policy_scores))) | |
elite_set = [policy_pop[x] for x in policy_ranks[:5]] | |
select_probs = np.array(policy_scores) / np.sum(policy_scores) | |
child_set = [crossover( | |
policy_pop[np.random.choice(range(n_policy), p=select_probs)], | |
policy_pop[np.random.choice(range(n_policy), p=select_probs)]) | |
for _ in range(n_policy - 5)] | |
mutated_list = [mutation(p) for p in child_set] | |
policy_pop = elite_set | |
policy_pop += mutated_list | |
policy_score = [evaluate_policy(env, p) for p in policy_pop] | |
best_policy = policy_pop[np.argmax(policy_score)] | |
end = time.time() | |
print('Best policy score = %0.2f. Time taken = %4.4f' %(np.max(policy_score), (end-start))) | |
## Evaluation | |
env = wrappers.Monitor(env, '/tmp/frozenlake1', force=True) | |
for _ in range(200): | |
run_episode(env, best_policy) | |
env.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment