Created
July 7, 2021 09:17
-
-
Save dajuno/3aea6beffae614fb1bdc430596d6c25d to your computer and use it in GitHub Desktop.
Example for PETSc MatCreateLRC using FEniCS and petsc4py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Solve a simple Poisson system with a low rank update using PETSc MatCreateLRC. | |
The low rank update is defined at 3 boundaries with different weights, Dirichlet | |
BC is applied to the other boundary. | |
https://www.mcs.anl.gov/petsc/petsc-3.13/docs/manualpages/Mat/MatCreateLRC.html | |
some hints: | |
https://fenicsproject.discourse.group/t/add-matrix-to-assembled-matrix/122/2 | |
https://lists.mcs.anl.gov/pipermail/petsc-users/2020-February/040228.html | |
https://fenicsproject.org/qa/11647/generating-matrices-applying-boundary-conditions-parallel/ | |
""" | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from dolfin import * | |
from petsc4py import PETSc | |
N = 16 | |
mesh = UnitSquareMesh(N, N) | |
V = FunctionSpace(mesh, "P", 1) | |
p = TrialFunction(V) | |
q = TestFunction(V) | |
a = inner(grad(p), grad(q)) * dx | |
L = Constant(1) * q * dx | |
A = assemble(a) | |
b = assemble(L) | |
dbc = DirichletBC(V, Constant(0), "on_boundary && near(x[0], 0)") | |
dbc.apply(A, b) | |
bnd = [ | |
CompiledSubDomain("on_boundary && near(x[0], 1)"), | |
CompiledSubDomain("on_boundary && near(x[1], 0)"), | |
CompiledSubDomain("on_boundary && near(x[1], 1)"), | |
] | |
boundaries = MeshFunction("size_t", mesh, mesh.topology().dim() - 1, 0) | |
for i, bi in enumerate(bnd): | |
bi.mark(boundaries, i) | |
ds = Measure("ds", domain=mesh, subdomain_data=boundaries) | |
delta = np.array([5.**k for k in range(len(bnd))]) | |
f_lst = [Constant(d) * p * ds(i) for i, d in enumerate(delta)] | |
u_lst = [assemble(f) for f in f_lst] | |
# c = interpolate(Expression("N*x[0]", degree=1, N=N), V) | |
# c = interpolate(Constant(1), V) | |
nrows = A.size(0) | |
info(f"{nrows = }") | |
dofmap = V.dofmap() | |
# Local, global | |
sizes = [ | |
dofmap.index_map().size(IndexMap.MapSize.OWNED), | |
dofmap.index_map().size(IndexMap.MapSize.GLOBAL), | |
] | |
info(f"{sizes = }") | |
comm = mesh.mpi_comm() | |
array = np.hstack([u.get_local() for u in u_lst]) | |
ncol = len(u_lst) | |
D = PETSc.Mat().createDense( | |
size=(sizes, (ncol, ncol)), array=array, comm=comm | |
) | |
D.setUp() | |
D.assemble() | |
# D_indpt, D_col, D_val = D.getValuesCSR() | |
# info(f"{D_indpt=}") | |
# info(f"{D_col=}") | |
# info(f"{D_val=}") | |
Ap = as_backend_type(A).mat() | |
use_diag = True | |
if use_diag: | |
vec = PETSc.Vec().createSeq(size=len(delta)) | |
vec.setArray(delta) | |
vec.assemble() | |
info(f"{vec.getType()}") | |
info(f"{delta}") | |
info(f"{vec.array}") | |
M = PETSc.Mat().createLRC(Ap, D, vec, D) | |
else: | |
M = PETSc.Mat().createLRC(Ap, D, None, D) | |
ksp = PETSc.KSP().create() | |
PETScOptions.set("ksp_type", "gmres") | |
PETScOptions.set("pc_type", "gamg") | |
# XXX Matrix is not explicitly formed, LU not working! | |
# PETScOptions.set("ksp_type", "preonly") | |
# PETScOptions.set("pc_type", "lu") | |
PETScOptions.set("ksp_monitor_true_residual") | |
PETScOptions.set("ksp_converged_reason") | |
ksp.setFromOptions() | |
ksp.setOperators(M, Ap) | |
# ksp.setOperators(M) | |
ksp.setUp() | |
w = Function(V) | |
x = as_backend_type(w.vector()) | |
ksp.solve(as_backend_type(b).vec(), x.vec()) | |
x.update_ghost_values() | |
info(f"{norm(w)}") | |
plot(w) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment