Created
April 16, 2021 20:52
-
-
Save dan0nchik/bfc361c6e8669cbac3e94b7eb495e076 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
FAILED [100%]Recreating table test_when_clean with data from file | |
Done | |
Task: cls | |
| iter | target | algo_i... | prepro... | | |
------------------------------------------------- | |
Child Iteration accuracy: 0.77528 | |
Child Iteration accuracy: 0.786516 | |
| 1 | 0.7865 | 2.063 | 1.061 | | |
Child Iteration accuracy: 0.786516 | |
Child Iteration accuracy: 0.808988 | |
| 2 | 0.809 | 6.983 | 0.008468 | | |
Child Iteration accuracy: 0.786516 | |
Child Iteration accuracy: 0.808988 | |
| 3 | 0.809 | 7.0 | 2.0 | | |
Child Iteration accuracy: 0.786516 | |
Child Iteration accuracy: 0.808988 | |
| 4 | 0.809 | 6.982 | 0.04241 | | |
Child Iteration accuracy: 0.786516 | |
100%|██████████| 1/1 [00:00<00:00, 5.56it/s] | |
test_automl_when_clean_df.py:7 (test_main[BayesianOptimizer]) | |
self = <bayes_opt.target_space.TargetSpace object at 0x11ea70f70> | |
params = {'algo_index_tuned': 6.99999761791255, 'preprocess_method': 1.9999986923442028} | |
def probe(self, params): | |
""" | |
Evaulates a single point x, to obtain the value y and then records them | |
as observations. | |
Notes | |
----- | |
If x has been previously seen returns a cached value of y. | |
Parameters | |
---------- | |
x : ndarray | |
a single point, with len(x) == self.dim | |
Returns | |
------- | |
y : float | |
target function value. | |
""" | |
x = self._as_array(params) | |
try: | |
> target = self._cache[_hashable(x)] | |
E KeyError: (6.99999761791255, 1.9999986923442028) | |
../../venv/lib/python3.9/site-packages/bayes_opt/target_space.py:191: KeyError | |
During handling of the above exception, another exception occurred: | |
self = <bayes_opt.target_space.TargetSpace object at 0x11eaeb520> | |
params = {'learning_rate': 0.5100947196305086, 'max_depth': 25.19044276398371, 'min_sample_weight_leaf': 8.62659476429784, 'n_estimators': 85.05593483656696, ...} | |
def probe(self, params): | |
""" | |
Evaulates a single point x, to obtain the value y and then records them | |
as observations. | |
Notes | |
----- | |
If x has been previously seen returns a cached value of y. | |
Parameters | |
---------- | |
x : ndarray | |
a single point, with len(x) == self.dim | |
Returns | |
------- | |
y : float | |
target function value. | |
""" | |
x = self._as_array(params) | |
try: | |
> target = self._cache[_hashable(x)] | |
E KeyError: (0.5100947196305086, 25.19044276398371, 8.62659476429784, 85.05593483656696, 1.6246289857511451) | |
../../venv/lib/python3.9/site-packages/bayes_opt/target_space.py:191: KeyError | |
During handling of the above exception, another exception occurred: | |
optimizer = 'BayesianOptimizer' | |
tmpdir = local('/private/var/folders/s_/9f0c9ct96xv0p4b0dvvd4xtr0000gn/T/pytest-of-danonchik/pytest-12/test_main_BayesianOptimizer_0') | |
@pytest.mark.parametrize("optimizer", ["OptunaSearch", "BayesianOptimizer"]) | |
def test_main(optimizer, tmpdir): | |
m = AutoML(connection_context) | |
> m.fit( | |
table_name="test_when_clean", | |
file_path="../../data/cleaned_train.csv", | |
target="Survived", | |
id_column="PassengerId", | |
steps=5, | |
categorical_features=["Survived"], | |
optimizer=optimizer, | |
) | |
test_automl_when_clean_df.py:12: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
../../automl.py:96: in fit | |
self.opt = pipe.train( | |
../../pipeline/pipeline.py:70: in train | |
self.opt.tune() | |
../../optimizers/bayes.py:149: in tune | |
opt.maximize(n_iter=self.iter, init_points=1) | |
../../venv/lib/python3.9/site-packages/bayes_opt/bayesian_optimization.py:185: in maximize | |
self.probe(x_probe, lazy=False) | |
../../venv/lib/python3.9/site-packages/bayes_opt/bayesian_optimization.py:116: in probe | |
self._space.probe(params) | |
../../venv/lib/python3.9/site-packages/bayes_opt/target_space.py:194: in probe | |
target = self.target_func(**params) | |
../../optimizers/bayes.py:88: in objective | |
opt.maximize(n_iter=1, init_points=1) | |
../../venv/lib/python3.9/site-packages/bayes_opt/bayesian_optimization.py:185: in maximize | |
self.probe(x_probe, lazy=False) | |
../../venv/lib/python3.9/site-packages/bayes_opt/bayesian_optimization.py:116: in probe | |
self._space.probe(params) | |
../../venv/lib/python3.9/site-packages/bayes_opt/target_space.py:194: in probe | |
target = self.target_func(**params) | |
../../optimizers/bayes.py:115: in child_objective | |
acc = algorithm.score(self.inner_data, self.inner_data.test) | |
../../algorithms/base_algo.py:23: in score | |
return self.model.score(df, key=data.id_colm, label=data.target) | |
../../venv/lib/python3.9/site-packages/hana_ml/algorithms/pal/trees.py:4362: in score | |
prediction = self.predict(data=data, key=key, features=features, | |
../../venv/lib/python3.9/site-packages/hana_ml/algorithms/pal/trees.py:4292: in predict | |
return super(HybridGradientBoostingClassifier, self)._predict( | |
../../venv/lib/python3.9/site-packages/hana_ml/algorithms/pal/sqlgen.py:318: in function_with_sql_tracing | |
return func(*args, **kwargs) | |
../../venv/lib/python3.9/site-packages/hana_ml/algorithms/pal/trees.py:3749: in _predict | |
call_pal_auto(conn, | |
../../venv/lib/python3.9/site-packages/hana_ml/algorithms/pal/pal_base.py:338: in call_pal_auto | |
if try_exec(cur, sql): | |
../../venv/lib/python3.9/site-packages/hana_ml/algorithms/pal/pal_base.py:309: in try_exec | |
execute_logged(cur, sql, conn.sql_tracer) # SQLTRACE added sql_tracer | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
cursor = <pyhdbcli.Cursor object at 0x11ea2fc90> | |
statement = 'DO (IN in_0 TABLE ("PassengerId" INT, "Pclass" INT, "Age" DOUBLE, "SibSp" INT, "Parch" INT, "Fare" DOUBLE, "Sex_femal... COLUMN TABLE "#PAL_HGBT_PREDICT_RESULT_TBL_69_0658FF16_9EF5_11EB_9E5C_6C4008A8C5E6" AS (SELECT * FROM :out_0);\nEND\n' | |
sql_tracer = <hana_ml.dataframe.SqlTrace object at 0x110671430> | |
def execute_logged(cursor, statement, sql_tracer=None): # SQLTRACE added sql_tracer | |
""" | |
Execute a SQL statement and log that we did it. | |
Parameters | |
---------- | |
cursor : hdbcli.dbapi.Cursor | |
Database cursor to execute the statement through. | |
statement : str | |
SQL statement to execute. | |
""" | |
logger.info("Executing SQL: %s", statement) | |
# SQLTRACE | |
if sql_tracer: | |
sql_tracer.trace_sql(statement) | |
> cursor.execute(statement) | |
E hdbcli.dbapi.Error: (256, 'sql processing error: "DEVELOPER"."(DO statement)": line 9 col 1 (at pos 592): search table error: _SYS_AFL.AFLPAL:HGBTPREDICT_ANY: [102] (range 1) TypeMismatch exception: Column \'ID\' does not exist') | |
../../venv/lib/python3.9/site-packages/hana_ml/ml_base.py:339: Error |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment