This example adds the Playwright MCP service to txtai agents.
Start the Playright MCP server locally.
npx @playwright/mcp@latest --port 8931
from txtai import Agent | |
agent = Agent( | |
tools=["http://mcp.server/path"], | |
model="LLM path" | |
) |
Blog: https://qwenlm.github.io/blog/qwq-32b/
Model: https://huggingface.co/Qwen/QwQ-32B
License: Apache 2.0
from txtai import LLM
from txtai import Embeddings | |
# Start the indexing run | |
embeddings = Embeddings(content=True) | |
embeddings.index(stream(), checkpoint="checkpoint dir") | |
# Elapsed time ⏳ then ⚡💥🔥 | |
# error, power outage, random failure | |
# Fix the issue 🧑🔧⚙️ |
from txtai import Embeddings | |
embeddings = Embeddings(content=True, graph=True) | |
embeddings.index(...) | |
# Standard Vector Search | |
embeddings.search("vector search query") | |
# Vector SQL query | |
embeddings.search(""" |
from txtai import Embeddings | |
# In-memory data | |
data = [{"name":"John", "age": 16}, {"name":"Jon", "age": 45},{"name":"Sarah", "age": 18}] | |
# Vector embeddings index with content storage | |
embeddings = Embeddings(content=True, columns={"text": "name"}) | |
embeddings.index(data) | |
# Vector similarity |