Created
July 2, 2025 13:57
-
-
Save diveddie/d7b977e483f2ec486a3cf4f52bf9b409 to your computer and use it in GitHub Desktop.
ComfyUI LDM Flux model.py fix
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Original code can be found on: https://github.com/black-forest-labs/flux | |
from dataclasses import dataclass | |
import torch | |
from torch import Tensor, nn | |
from einops import rearrange, repeat | |
import comfy.ldm.common_dit | |
from .layers import ( | |
DoubleStreamBlock, | |
EmbedND, | |
LastLayer, | |
MLPEmbedder, | |
SingleStreamBlock, | |
timestep_embedding, | |
) | |
@dataclass | |
class FluxParams: | |
in_channels: int | |
out_channels: int | |
vec_in_dim: int | |
context_in_dim: int | |
hidden_size: int | |
mlp_ratio: float | |
num_heads: int | |
depth: int | |
depth_single_blocks: int | |
axes_dim: list | |
theta: int | |
patch_size: int | |
qkv_bias: bool | |
guidance_embed: bool | |
class Flux(nn.Module): | |
""" | |
Transformer model for flow matching on sequences. | |
""" | |
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs): | |
super().__init__() | |
self.dtype = dtype | |
params = FluxParams(**kwargs) | |
self.params = params | |
self.patch_size = params.patch_size | |
self.in_channels = params.in_channels * params.patch_size * params.patch_size | |
self.out_channels = params.out_channels * params.patch_size * params.patch_size | |
if params.hidden_size % params.num_heads != 0: | |
raise ValueError( | |
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
) | |
pe_dim = params.hidden_size // params.num_heads | |
if sum(params.axes_dim) != pe_dim: | |
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) | |
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations) | |
self.guidance_in = ( | |
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity() | |
) | |
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
qkv_bias=params.qkv_bias, | |
dtype=dtype, device=device, operations=operations | |
) | |
for _ in range(params.depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) | |
for _ in range(params.depth_single_blocks) | |
] | |
) | |
if final_layer: | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) | |
def forward_orig( | |
self, | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
timesteps: Tensor, | |
y: Tensor, | |
guidance: Tensor = None, | |
control = None, | |
transformer_options={}, | |
# attn_mask: Tensor = None, | |
) -> Tensor: | |
if y is None: | |
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype) | |
patches_replace = transformer_options.get("patches_replace", {}) | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
# running on sequences img | |
img = self.img_in(img) | |
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype)) | |
if self.params.guidance_embed: | |
if guidance is not None: | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype)) | |
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim]) | |
txt = self.txt_in(txt) | |
if img_ids is not None: | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
else: | |
pe = None | |
blocks_replace = patches_replace.get("dit", {}) | |
for i, block in enumerate(self.double_blocks): | |
if ("double_block", i) in blocks_replace: | |
def block_wrap(args): | |
out = {} | |
out["img"], out["txt"] = block(img=args["img"], | |
txt=args["txt"], | |
vec=args["vec"], | |
pe=args["pe"]) | |
# attn_mask=args.get("attn_mask")) | |
return out | |
out = blocks_replace[("double_block", i)]({"img": img, | |
"txt": txt, | |
"vec": vec, | |
"pe": pe}, | |
# "attn_mask": attn_mask}, | |
{"original_block": block_wrap}) | |
txt = out["txt"] | |
img = out["img"] | |
else: | |
img, txt = block(img=img, | |
txt=txt, | |
vec=vec, | |
pe=pe) | |
# attn_mask=attn_mask) | |
if control is not None: # Controlnet | |
control_i = control.get("input") | |
if i < len(control_i): | |
add = control_i[i] | |
if add is not None: | |
img += add | |
if img.dtype == torch.float16: | |
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504) | |
img = torch.cat((txt, img), 1) | |
for i, block in enumerate(self.single_blocks): | |
if ("single_block", i) in blocks_replace: | |
def block_wrap(args): | |
out = {} | |
out["img"] = block(args["img"], | |
vec=args["vec"], | |
pe=args["pe"], | |
attn_mask=args.get("attn_mask")) | |
return out | |
out = blocks_replace[("single_block", i)]({"img": img, | |
"vec": vec, | |
"pe": pe, | |
"attn_mask": attn_mask}, | |
{"original_block": block_wrap}) | |
img = out["img"] | |
else: | |
# img = block(img, vec=vec, pe=pe, attn_mask=attn_mask) | |
img = block(img, vec=vec, pe=pe) | |
if control is not None: # Controlnet | |
control_o = control.get("output") | |
if i < len(control_o): | |
add = control_o[i] | |
if add is not None: | |
img[:, txt.shape[1] :, ...] += add | |
img = img[:, txt.shape[1] :, ...] | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
return img | |
def process_img(self, x, index=0, h_offset=0, w_offset=0): | |
bs, c, h, w = x.shape | |
patch_size = self.patch_size | |
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size)) | |
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size) | |
h_len = ((h + (patch_size // 2)) // patch_size) | |
w_len = ((w + (patch_size // 2)) // patch_size) | |
h_offset = ((h_offset + (patch_size // 2)) // patch_size) | |
w_offset = ((w_offset + (patch_size // 2)) // patch_size) | |
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype) | |
img_ids[:, :, 0] = img_ids[:, :, 1] + index | |
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) | |
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) | |
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs): | |
bs, c, h_orig, w_orig = x.shape | |
patch_size = self.patch_size | |
h_len = ((h_orig + (patch_size // 2)) // patch_size) | |
w_len = ((w_orig + (patch_size // 2)) // patch_size) | |
img, img_ids = self.process_img(x) | |
img_tokens = img.shape[1] | |
if ref_latents is not None: | |
h = 0 | |
w = 0 | |
for ref in ref_latents: | |
h_offset = 0 | |
w_offset = 0 | |
if ref.shape[-2] + h > ref.shape[-1] + w: | |
w_offset = w | |
else: | |
h_offset = h | |
kontext, kontext_ids = self.process_img(ref, index=1, h_offset=h_offset, w_offset=w_offset) | |
img = torch.cat([img, kontext], dim=1) | |
img_ids = torch.cat([img_ids, kontext_ids], dim=1) | |
h = max(h, ref.shape[-2] + h_offset) | |
w = max(w, ref.shape[-1] + w_offset) | |
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) | |
# out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None)) | |
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options) | |
out = out[:, :img_tokens] | |
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment