Last active
September 11, 2023 04:05
-
-
Save dmateos/f34c98fadf102d75841d678afcbff01d to your computer and use it in GitHub Desktop.
genetic.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
from matplotlib import pyplot as plt | |
IMAGE = "circle.jpg" | |
#IMAGE = "lisa.png" | |
#IMAGE = "melita.png" | |
INITIAL_POPULATION = 500 | |
EPOCHS = 128 | |
DNA_LENGTH = 64 | |
MUTATE_RATE = 100 | |
RADIUS_MAX = 50 | |
POPULATION_HEALTH_DIVISOR = 5 | |
class Pop: | |
def __init__(self, shape): | |
self.dna = [] | |
self.shape = shape | |
def __str__(self): | |
print(f"{self}, len is: #{len(self.dna)}") | |
def init_dna(self): | |
raise NotImplementedError() | |
def generate_image_from_dna(self): | |
raise NotImplementedError() | |
def mutate_dna(self, child, i): | |
pass | |
def error_function(self, ref_image): | |
# Float value of the difference between the two images | |
return (np.sum(np.abs(self.generate_image_from_dna().astype(float) - ref_image.astype(float))), 0) | |
def breed(self, other): | |
child = self.__class__(self.shape) | |
for i in range(len(self.dna)): | |
if np.random.randint(0,2) == 0: | |
child.dna.append(self.dna[i]) | |
else: | |
child.dna.append(other.dna[i]) | |
# mutate | |
for i in range(len(child.dna)): | |
if np.random.randint(0,MUTATE_RATE) == 0: | |
self.mutate_dna(child, i) | |
return child | |
class PopCircle(Pop): | |
def __init__(self, shape): | |
super().__init__(shape) | |
def init_dna(self): | |
# Random circles, store in DNA | |
for i in range(DNA_LENGTH): | |
center = (np.random.randint(0,self.shape[1]), np.random.randint(0,self.shape[0])) | |
radius = np.random.randint(1,RADIUS_MAX) | |
color = (np.random.randint(0,255),np.random.randint(0,255),np.random.randint(0,255)) | |
self.dna.append((center,radius,color)) | |
def generate_image_from_dna(self): | |
img = np.zeros((self.shape[0],self.shape[1],3), np.uint8) | |
for i in range(len(self.dna)): | |
cv2.circle(img,(self.dna[i][0][0],self.dna[i][0][1]),self.dna[i][1],self.dna[i][2],-1) | |
return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
def mutate_dna(self, child, i): | |
child.dna[i] = (child.dna[i][0], np.random.randint(1,RADIUS_MAX), child.dna[i][2]) | |
center = (np.random.randint(0,self.shape[1]), np.random.randint(0,self.shape[0])) | |
child.dna[i] = (center, child.dna[i][1], child.dna[i][2]) | |
def get_top_n(pop, ref_image, n): | |
# Sort by error | |
pop.sort(key=lambda x: x.error_function(ref_image)[0]) | |
return pop[:n] | |
ref_image = cv2.imread(IMAGE) | |
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2GRAY) | |
population = [] | |
error_values = [] | |
# Generate initial population | |
for n in range(0, INITIAL_POPULATION): | |
#pop = PopPolygon(ref_image.shape) | |
pop = PopCircle(ref_image.shape) | |
pop.init_dna() | |
population.append(pop) | |
first_best = get_top_n(population, ref_image, 1)[0] | |
for i in range(0, EPOCHS): | |
print("Generation: " + str(i)) | |
top_list = get_top_n(population, ref_image, len(population)) | |
best_error = top_list[0].error_function(ref_image)[0] | |
error_values.append(best_error) | |
print("Best: " + str(best_error)) | |
# Breed 1000 new population based on best | |
population_new = [] | |
for n in range(0, INITIAL_POPULATION): | |
try: | |
parent1 = top_list[np.random.randint(0,INITIAL_POPULATION/POPULATION_HEALTH_DIVISOR)] | |
parent2 = top_list[np.random.randint(0,INITIAL_POPULATION/POPULATION_HEALTH_DIVISOR)] | |
child = parent1.breed(parent2) | |
population_new.append(child) | |
except Exception as e: | |
print(e) | |
print(str(parent1)) | |
print(str(parent2)) | |
raise e | |
population = population_new | |
top_list = sorted(population, key=lambda x: x.error_function(ref_image)[0]) | |
best = top_list[0] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment