Created
October 3, 2019 12:06
-
-
Save dmitrysarov/6f0ef76d4a4c0004dfea9eefc2bb5b81 to your computer and use it in GitHub Desktop.
Simple tool implemented in jupyter for image dynamic range and frequency analysis.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# %matplotlib inline | |
%matplotlib notebook | |
from ipywidgets import interact, widgets, Layout | |
import matplotlib.pyplot as plt | |
from matplotlib.image import AxesImage | |
from IPython.display import display | |
from numpy.fft import fftshift, fft2, ifft2, ifftshift | |
import time | |
from skimage import transform | |
def makeGaussian(size, fwhm = 3, center=None): | |
if isinstance(size, int): | |
size = (size, size) | |
if center: | |
assert isinstance(center, tuple) | |
""" | |
if size is tuple - (y_size, x_size) | |
if center is tuple - (y_size, x_size) | |
""" | |
y, x = np.meshgrid(np.arange(size[1]), np.arange(size[0])) | |
if center is None: | |
x0 = size[1] // 2 | |
y0 = size[0] // 2 | |
else: | |
x0 = center[1] | |
y0 = center[0] | |
notnorm_gaus = np.exp(-((x-x0)**2 + (y-y0)**2) / fwhm**2) | |
return notnorm_gaus/notnorm_gaus.max() | |
class Image_analizer(object): | |
''' | |
Allow to make fast analysis of image among ferquences and dynamic range. | |
Image must be grayscale, nunmpy array, 2D or 3D(time domain) | |
''' | |
def __init__(self, figsize=(6,6), imgsize=(512,512)): | |
self.dynamic_range = None | |
self.seq_frame = None | |
self.hight_freq_pass = None | |
self.low_freq_pass = None | |
self.figsize = figsize | |
self.imgsize = imgsize | |
def process_frame(self, frame): | |
''' | |
produce 2D image processed according with selected parameters | |
''' | |
if not self.hight_freq_pass == 0: | |
gaussian = makeGaussian(frame.shape, self.hight_freq_pass) | |
fft_data = fftshift(fft2(ifftshift(frame))) | |
filtered_fft = fft_data*gaussian | |
frame = np.abs(fftshift(ifft2(ifftshift(filtered_fft)))) | |
if not self.low_freq_pass == 0: | |
gaussian = makeGaussian(frame.shape, self.low_freq_pass) | |
fft_data = fftshift(fft2(ifftshift(frame))) | |
filtered_fft = fft_data*(1-gaussian) | |
frame = np.abs(fftshift(ifft2(ifftshift(filtered_fft)))) | |
frame = np.clip(frame,*bounds) | |
return frame | |
def show(self, data): | |
''' | |
call iteractive tool, for frequnces and dynamic range selection | |
''' | |
if len(data.shape) == 2: | |
data = data[np.newaxis, ...] | |
if self.dynamic_range is None: | |
self.dynamic_range = (0, data.max()) | |
else: | |
self.dynamic_range = tuple(np.clip(self.dynamic_range, 0, data.max())) | |
if self.seq_frame is None: | |
self.seq_frame = 0 | |
else: | |
self.seq_frame = np.clip(self.seq_frame, 0, len(data)) | |
if self.hight_freq_pass is None: | |
self.hight_freq_pass = 0 | |
if self.low_freq_pass is None: | |
self.low_freq_pass = 0 | |
print(data.min(), data.max()) | |
print(self.dynamic_range) | |
data = transform.resize(data, (data.shape[0],*self.imgsize), preserve_range=True) | |
def update(bounds, step, hp, lp): | |
''' | |
called each widget position update | |
''' | |
self.hight_freq_pass = hp | |
self.low_freq_pass = lp | |
self.seq_frame = step | |
self.dynamic_range = bounds | |
tic = time.time() | |
d = data[step] | |
if not hp==0: | |
gaussian = makeGaussian(data.shape[1:], hp) | |
fft_data = fftshift(fft2(ifftshift(d))) | |
filtered = fft_data*gaussian | |
d = np.abs(fftshift(ifft2(ifftshift(filtered)))) | |
if not lp==0: | |
gaussian = makeGaussian(data.shape[1:], lp) | |
fft_data = fftshift(fft2(ifftshift(d))) | |
filtered = fft_data*(1-gaussian) | |
d = np.abs(fftshift(ifft2(ifftshift(filtered)))) | |
d = d - d.min() | |
img_obj.set_data(d) | |
img_obj_init.set_data(data[step]) | |
img_obj.set_clim(*bounds) | |
fig.canvas.draw() | |
# display(fig) | |
print('Processing time took {}'.format(time.time() - tic), end='\r') | |
slider_r = widgets.FloatRangeSlider( | |
value=[self.dynamic_range[0], self.dynamic_range[1]], | |
min=0,#data.min(), | |
max=data.max(), | |
step=(data.max()-data.min())/1000, | |
description='range:', | |
disabled=False, | |
continuous_update=False, | |
orientation='horizontal', | |
readout=True, | |
readout_format='.1f', | |
layout=Layout(width='80%') | |
) | |
slider_s = widgets.IntSlider( | |
value=self.seq_frame, | |
min=0, | |
max=len(data)-1, | |
step=1, | |
description='step', | |
disabled=False, | |
continuous_update=False, | |
orientation='horizontal', | |
readout=True, | |
readout_format='d', | |
layout=Layout(width='80%') | |
) | |
slider_hp = widgets.FloatSlider( | |
value=self.hight_freq_pass, | |
min=0, | |
max=data.shape[1], | |
step=data.shape[1]/1000, | |
description='hight_pass', | |
disabled=False, | |
continuous_update=False, | |
orientation='horizontal', | |
readout=True, | |
readout_format='f', | |
layout=Layout(width='80%') | |
) | |
slider_lp = widgets.FloatSlider( | |
value=self.low_freq_pass, | |
min=0, | |
max=data.shape[1], | |
step=data.shape[1]/1000, | |
description='low_pass', | |
disabled=False, | |
continuous_update=False, | |
orientation='horizontal', | |
readout=True, | |
readout_format='f', | |
layout=Layout(width='80%') | |
) | |
fig, ax = plt.subplots(1,2, figsize=self.figsize) | |
img_obj = ax[0].imshow(data[0], cmap='gray') | |
img_obj_init = ax[1].imshow(data[0], cmap='gray') | |
# plt.close() | |
interact(update, bounds=slider_r, step=slider_s, hp=slider_hp, lp=slider_lp) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment