Last active
January 4, 2017 04:50
-
-
Save dotchang/a3aa133593ee42deede59df1b41c4a04 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef _HAL_H_ | |
#define _HAL_H_ | |
/* --COPYRIGHT--,BSD | |
* Copyright (c) 2015, Texas Instruments Incorporated | |
* All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions | |
* are met: | |
* | |
* * Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* | |
* * Redistributions in binary form must reproduce the above copyright | |
* notice, this list of conditions and the following disclaimer in the | |
* documentation and/or other materials provided with the distribution. | |
* | |
* * Neither the name of Texas Instruments Incorporated nor the names of | |
* its contributors may be used to endorse or promote products derived | |
* from this software without specific prior written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, | |
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | |
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; | |
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR | |
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | |
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
* --/COPYRIGHT--*/ | |
//! \file sw\modules\hal\boards\boostxldrv8305evm_revA\f28x\f2802x\src\hal.h | |
//! \brief Contains public interface to various functions related | |
//! to the HAL object | |
//! | |
//! (C) Copyright 2015, Texas Instruments, Inc. | |
// ************************************************************************** | |
// the includes | |
// modules | |
// platforms | |
#include "hal_obj.h" | |
#include "sw/modules/svgen/src/32b/svgen_current.h" | |
//! | |
//! | |
//! \defgroup HAL HAL | |
//! | |
//@{ | |
#ifdef __cplusplus | |
extern "C" { | |
#endif | |
// ************************************************************************** | |
// the defines | |
#define HW_POT 1 | |
#define HW_SW 1 | |
//! \brief Defines LAUNCHPAD which is needed to blink LED | |
#define LAUNCHPAD | |
//! \brief Defines that a DRV8305 chip SPI port is used on the board. | |
#define DRV8305_SPI | |
#define Device_cal (void (*)(void))0x3D7C80 | |
//! \brief Defines used in oscillator calibration functions | |
//! \brief Defines the scale factor for Q15 fixed point numbers (2^15) | |
#define FP_SCALE 32768 | |
//! \brief Defines the quantity added to Q15 numbers before converting to integer to round the number | |
#define FP_ROUND FP_SCALE/2 | |
//! \brief Defines the amount to add to Q16.15 fixed point number to shift from a fine trim range of | |
//! \brief (-31 to 31) to (1 to 63). This guarantees that the trim is positive and can | |
//! \brief therefore be efficiently rounded | |
#define OSC_POSTRIM 32 | |
#define OSC_POSTRIM_OFF FP_SCALE*OSC_POSTRIM | |
//! \brief The following functions return reference values stored in OTP. | |
//! \brief Defines the slope used to compensate oscillator 1 (fine trim steps / ADC code). Stored in fixed point Q15 format | |
#define getOsc1FineTrimSlope() (*(int16_t (*)(void))0x3D7E90)() | |
//! \brief Defines the oscillator 1 fine trim at high temp | |
#define getOsc1FineTrimOffset() (*(int16_t (*)(void))0x3D7E93)() | |
//! \brief Defines the oscillator 1 coarse trim | |
#define getOsc1CoarseTrim() (*(int16_t (*)(void))0x3D7E96)() | |
//! \brief Defines the slope used to compensate oscillator 2 (fine trim steps / ADC code). Stored | |
//! \brief in fixed point Q15 format. | |
#define getOsc2FineTrimSlope() (*(int16_t (*)(void))0x3D7E99)() | |
//! \brief Defines the oscillator 2 fine trim at high temp | |
#define getOsc2FineTrimOffset() (*(int16_t (*)(void))0x3D7E9C)() | |
//! \brief Defines the oscillator 2 coarse trim | |
#define getOsc2CoarseTrim() (*(int16_t (*)(void))0x3D7E9F)() | |
//! \brief Defines the ADC reading of temperature sensor at reference temperature for compensation | |
#define getRefTempOffset() (*(int16_t (*)(void))0x3D7EA2)() | |
//! \brief Defines the PWM deadband falling edge delay count (system clocks) | |
//! | |
#define HAL_PWM_DBFED_CNT 1 | |
//! \brief Defines the PWM deadband rising edge delay count (system clocks) | |
//! | |
#define HAL_PWM_DBRED_CNT 1 | |
//! \brief Defines the function to turn LEDs off | |
//! | |
#define HAL_turnLedOff HAL_setGpioHigh | |
//! \brief Defines the function to turn LEDs on | |
//! | |
#define HAL_turnLedOn HAL_setGpioLow | |
//! \brief Defines the function to turn LEDs on | |
//! | |
#define HAL_toggleLed HAL_toggleGpio | |
// ************************************************************************** | |
// the typedefs | |
//! \brief Enumeration for the LED numbers | |
//! | |
typedef enum | |
{ | |
HAL_Gpio_LED2=GPIO_Number_0 //!< GPIO pin number. LaunchPad uses PWM pins for LEDs | |
} HAL_LedNumber_e; | |
//! \brief Enumeration for the sensor types | |
//! | |
typedef enum | |
{ | |
HAL_SensorType_Current=0, //!< Enumeration for current sensor | |
HAL_SensorType_Voltage //!< Enumeration for voltage sensor | |
} HAL_SensorType_e; | |
// ************************************************************************** | |
// the globals | |
extern interrupt void mainISR(void); | |
//Added by Maya | |
#ifdef SCI | |
extern interrupt void sciaISR(void); | |
#endif | |
//Added by Dmitri Ranfft on 16.09.2015 | |
#ifdef CAP | |
extern __interrupt void ecap1ISR(void); | |
#endif | |
// ************************************************************************** | |
// the function prototypes | |
//! \brief Acknowledges an interrupt from the ADC so that another ADC interrupt can | |
//! happen again. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] intNumber The interrupt number | |
static inline void HAL_acqAdcInt(HAL_Handle handle,const ADC_IntNumber_e intNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// clear the ADC interrupt flag | |
ADC_clearIntFlag(obj->adcHandle,intNumber); | |
// Acknowledge interrupt from PIE group 10 | |
PIE_clearInt(obj->pieHandle,PIE_GroupNumber_10); | |
return; | |
} // end of HAL_acqAdcInt() function | |
//! \brief Acknowledges an interrupt from the PWM so that another PWM interrupt can | |
//! happen again. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pwmNumber The PWM number | |
static inline void HAL_acqPwmInt(HAL_Handle handle,const PWM_Number_e pwmNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// clear the PWM interrupt flag | |
PWM_clearIntFlag(obj->pwmHandle[pwmNumber]); | |
// clear the SOCA flag | |
PWM_clearSocAFlag(obj->pwmHandle[pwmNumber]); | |
// Acknowledge interrupt from PIE group 3 | |
PIE_clearInt(obj->pieHandle,PIE_GroupNumber_3); | |
return; | |
} // end of HAL_acqPwmInt() function | |
//! \brief Executes calibration routines | |
//! \details Values for offset and gain are programmed into OTP memory at | |
//! the TI factory. This calls and internal function that programs | |
//! these offsets and gains into the ADC registers. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_cal(HAL_Handle handle); | |
//! \brief Disables global interrupts | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_disableGlobalInts(HAL_Handle handle); | |
//! \brief Disables the watch dog | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_disableWdog(HAL_Handle handle); | |
//! \brief Disables the PWM device | |
//! \details Turns off the outputs of the EPWM peripherals which will put | |
//! the power switches into a high impedance state. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
static inline void HAL_disablePwm(HAL_Handle handle) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
PWM_setOneShotTrip(obj->pwmHandle[PWM_Number_1]); | |
PWM_setOneShotTrip(obj->pwmHandle[PWM_Number_2]); | |
PWM_setOneShotTrip(obj->pwmHandle[PWM_Number_3]); | |
return; | |
} // end of HAL_disablePwm() function | |
//! \brief Enables the ADC interrupts | |
//! \details Enables the ADC interrupt in the PIE, and CPU. Enables the | |
//! interrupt to be sent from the ADC peripheral. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_enableAdcInts(HAL_Handle handle); | |
//! \brief Enables the debug interrupt | |
//! \details The debug interrupt is used for the real-time debugger. It is | |
//! not needed if the real-time debugger is not used. Clears | |
//! bit 1 of ST1. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_enableDebugInt(HAL_Handle handle); | |
//! \brief Enables global interrupts | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_enableGlobalInts(HAL_Handle handle); | |
//! \brief Enables the 8305 device | |
//! \details Provides the correct timing to enable the drv8305 | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_enableDrv(HAL_Handle handle); | |
//! \brief Enables the PWM devices | |
//! \details Turns on the outputs of the EPWM peripheral which will allow | |
//! the power switches to be controlled. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
static inline void HAL_enablePwm(HAL_Handle handle) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
PWM_clearOneShotTrip(obj->pwmHandle[PWM_Number_1]); | |
PWM_clearOneShotTrip(obj->pwmHandle[PWM_Number_2]); | |
PWM_clearOneShotTrip(obj->pwmHandle[PWM_Number_3]); | |
return; | |
} // end of HAL_enablePwm() function | |
//! \brief Enables the PWM interrupt | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_enablePwmInt(HAL_Handle handle); | |
//! \brief Gets the ADC delay value | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] socNumber The ADC SOC number | |
//! \return The ADC delay value | |
static inline ADC_SocSampleDelay_e HAL_getAdcSocSampleDelay(HAL_Handle handle, | |
const ADC_SocNumber_e socNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
return(ADC_getSocSampleDelay(obj->adcHandle,socNumber)); | |
} // end of HAL_getAdcSocSampleDelay() function | |
//! \brief Gets the ADC bias value | |
//! \details The ADC bias contains the feedback circuit's offset and bias. | |
//! Bias is the mathematical offset used when a bi-polar signal | |
//! is read into a uni-polar ADC. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] sensorType The sensor type | |
//! \param[in] sensorNumber The sensor number | |
//! \return The ADC bias value | |
static inline _iq HAL_getBias(HAL_Handle handle, | |
const HAL_SensorType_e sensorType, | |
uint_least8_t sensorNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
_iq bias = _IQ(0.0); | |
if(sensorType == HAL_SensorType_Current) | |
{ | |
bias = obj->adcBias.I.value[sensorNumber]; | |
} | |
else if(sensorType == HAL_SensorType_Voltage) | |
{ | |
bias = obj->adcBias.V.value[sensorNumber]; | |
} | |
return(bias); | |
} // end of HAL_getBias() function | |
//! \brief Gets the current scale factor | |
//! \details The current scale factor is defined as | |
//! USER_ADC_FULL_SCALE_CURRENT_A/USER_IQ_FULL_SCALE_CURRENT_A. | |
//! This scale factor is not used when converting between PU amps | |
//! and real amps. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \return The current scale factor | |
static inline _iq HAL_getCurrentScaleFactor(HAL_Handle handle) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
return(obj->current_sf); | |
} // end of HAL_getCurrentScaleFactor() function | |
//! \brief Gets the number of current sensors | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \return The number of current sensors | |
static inline uint_least8_t HAL_getNumCurrentSensors(HAL_Handle handle) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
return(obj->numCurrentSensors); | |
} // end of HAL_getNumCurrentSensors() function | |
//! \brief Gets the number of voltage sensors | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \return The number of voltage sensors | |
static inline uint_least8_t HAL_getNumVoltageSensors(HAL_Handle handle) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
return(obj->numVoltageSensors); | |
} // end of HAL_getNumVoltageSensors() function | |
//! \brief Gets the value used to set the low pass filter pole for offset estimation | |
//! \details An IIR single pole low pass filter is used to find the feedback circuit's | |
//! offsets. This function returns the value of that pole. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] sensorType The sensor type | |
//! \param[in] sensorNumber The sensor number | |
//! \return The value used to set the low pass filter pole, pu | |
static inline _iq HAL_getOffsetBeta_lp_pu(HAL_Handle handle, | |
const HAL_SensorType_e sensorType, | |
const uint_least8_t sensorNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
_iq beta_lp_pu = _IQ(0.0); | |
if(sensorType == HAL_SensorType_Current) | |
{ | |
beta_lp_pu = OFFSET_getBeta(obj->offsetHandle_I[sensorNumber]); | |
} | |
else if(sensorType == HAL_SensorType_Voltage) | |
{ | |
beta_lp_pu = OFFSET_getBeta(obj->offsetHandle_V[sensorNumber]); | |
} | |
return(beta_lp_pu); | |
} // end of HAL_getOffsetBeta_lp_pu() function | |
//! \brief Gets the offset value | |
//! \details The offsets that are calculated during the feedback circuits calibrations | |
//! are returned from the IIR filter object. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] sensorType The sensor type | |
//! \param[in] sensorNumber The sensor number | |
//! \return The offset value | |
static inline _iq HAL_getOffsetValue(HAL_Handle handle, | |
const HAL_SensorType_e sensorType, | |
const uint_least8_t sensorNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
_iq offset = _IQ(0.0); | |
if(sensorType == HAL_SensorType_Current) | |
{ | |
offset = OFFSET_getOffset(obj->offsetHandle_I[sensorNumber]); | |
} | |
else if(sensorType == HAL_SensorType_Voltage) | |
{ | |
offset = OFFSET_getOffset(obj->offsetHandle_V[sensorNumber]); | |
} | |
return(offset); | |
} // end of HAL_getOffsetValue() function | |
//! \brief Gets the voltage scale factor | |
//! \details The voltage scale factor is defined as | |
//! USER_ADC_FULL_SCALE_VOLTAGE_V/USER_IQ_FULL_SCALE_VOLTAGE_V. | |
//! This scale factor is not used when converting between PU volts | |
//! and real volts. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \return The voltage scale factor | |
static inline _iq HAL_getVoltageScaleFactor(HAL_Handle handle) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
return(obj->voltage_sf); | |
} // end of HAL_getVoltageScaleFactor() function | |
//! \brief Configures the fault protection logic | |
//! \details Sets up the trip zone inputs so that when a comparator | |
//! signal from outside the micro-controller trips a fault, | |
//! the EPWM peripheral blocks will force the | |
//! power switches into a high impedance state. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_setupFaults(HAL_Handle handle); | |
//! \brief Initializes the hardware abstraction layer (HAL) object | |
//! \details Initializes all handles to the microcontroller peripherals. | |
//! Returns a handle to the HAL object. | |
//! \param[in] pMemory A pointer to the memory for the hardware abstraction layer object | |
//! \param[in] numBytes The number of bytes allocated for the hardware abstraction layer object, bytes | |
//! \return The hardware abstraction layer (HAL) object handle | |
extern HAL_Handle HAL_init(void *pMemory,const size_t numBytes); | |
//! \brief Initializes the interrupt vector table | |
//! \details Points the ISR to the function mainISR. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
static inline void HAL_initIntVectorTable(HAL_Handle handle) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
PIE_Obj *pie = (PIE_Obj *)obj->pieHandle; | |
ENABLE_PROTECTED_REGISTER_WRITE_MODE; | |
pie->ADCINT1 = &mainISR; | |
//Added by Maya | |
#ifdef SCI | |
pie->SCIRXINTA = &sciaISR; | |
#endif | |
//Added by Dmitri Ranfft on 16.09.2015 | |
#ifdef CAP | |
pie->ECAP1_INT = &ecap1ISR; | |
//PIE_registerPieIntHandler(obj->pieHandle, PIE_GroupNumber_4, PIE_SubGroupNumber_1, (intVec_t)&ecap1ISR); | |
#endif | |
DISABLE_PROTECTED_REGISTER_WRITE_MODE; | |
return; | |
} // end of HAL_initIntVectorTable() function | |
//! \brief Reads the ADC data | |
//! \details Reads in the ADC result registers, adjusts for offsets, and | |
//! scales the values according to the settings in user.h. The | |
//! structure gAdcData holds three phase voltages, three line | |
//! currents, and one DC bus voltage. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pAdcData A pointer to the ADC data buffer | |
static inline void HAL_readAdcData(HAL_Handle handle,HAL_AdcData_t *pAdcData) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
_iq value; | |
_iq current_sf = HAL_getCurrentScaleFactor(handle); | |
_iq voltage_sf = HAL_getVoltageScaleFactor(handle); | |
// convert current A | |
// sample the first sample twice due to errata sprz342f, ignore the first sample | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_1); | |
value = _IQ12mpy(value,current_sf) - obj->adcBias.I.value[0]; // divide by 2^numAdcBits = 2^12 | |
pAdcData->I.value[0] = value; | |
// convert current B | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_2); | |
value = _IQ12mpy(value,current_sf) - obj->adcBias.I.value[1]; // divide by 2^numAdcBits = 2^12 | |
pAdcData->I.value[1] = value; | |
// convert current C | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_3); | |
value = _IQ12mpy(value,current_sf) - obj->adcBias.I.value[2]; // divide by 2^numAdcBits = 2^12 | |
pAdcData->I.value[2] = value; | |
// convert voltage A | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_4); | |
value = _IQ12mpy(value,voltage_sf) - obj->adcBias.V.value[0]; // divide by 2^numAdcBits = 2^12 | |
pAdcData->V.value[0] = value; | |
// convert voltage B | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_5); | |
value = _IQ12mpy(value,voltage_sf) - obj->adcBias.V.value[1]; // divide by 2^numAdcBits = 2^12 | |
pAdcData->V.value[1] = value; | |
// convert voltage C | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_6); | |
value = _IQ12mpy(value,voltage_sf) - obj->adcBias.V.value[2]; // divide by 2^numAdcBits = 2^12 | |
pAdcData->V.value[2] = value; | |
// read the dcBus voltage value | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_7); // divide by 2^numAdcBits = 2^12 | |
value = _IQ12mpy(value,voltage_sf); | |
pAdcData->dcBus = value; | |
return; | |
} // end of HAL_readAdcData() function | |
//! \brief Reads the ADC data | |
//! \details Reads in the ADC result registers, and | |
//! scales the values according to the settings in user.h. The | |
//! structure gAdcData holds three phase voltages, three line | |
//! currents, and one DC bus voltage. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pAdcData A pointer to the ADC data buffer | |
static inline void HAL_readAdcDataWithOffsets(HAL_Handle handle,HAL_AdcData_t *pAdcData) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
_iq value; | |
_iq current_sf = HAL_getCurrentScaleFactor(handle); | |
_iq voltage_sf = HAL_getVoltageScaleFactor(handle); | |
// convert current A | |
// sample the first sample twice due to errata sprz342f, ignore the first sample | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_1); | |
value = _IQ12mpy(value,current_sf); | |
pAdcData->I.value[0] = value; | |
// convert current B | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_2); | |
value = _IQ12mpy(value,current_sf); | |
pAdcData->I.value[1] = value; | |
// convert current C | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_3); | |
value = _IQ12mpy(value,current_sf); | |
pAdcData->I.value[2] = value; | |
// convert voltage A | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_4); | |
value = _IQ12mpy(value,voltage_sf); | |
pAdcData->V.value[0] = value; | |
// convert voltage B | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_5); | |
value = _IQ12mpy(value,voltage_sf); | |
pAdcData->V.value[1] = value; | |
// convert voltage C | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_6); | |
value = _IQ12mpy(value,voltage_sf); | |
pAdcData->V.value[2] = value; | |
// read the dcBus voltage value | |
value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_7); | |
value = _IQ12mpy(value,voltage_sf); | |
pAdcData->dcBus = value; | |
return; | |
} // end of HAL_readAdcDataWithOffsets() function | |
//! \brief Reads the timer count | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] timerNumber The timer number, 0,1 or 2 | |
//! \return The timer count | |
static inline uint32_t HAL_readTimerCnt(HAL_Handle handle,const uint_least8_t timerNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
uint32_t timerCnt = TIMER_getCount(obj->timerHandle[timerNumber]); | |
return(timerCnt); | |
} // end of HAL_readTimerCnt() function | |
//! \brief Reloads the timer | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] timerNumber The timer number, 0,1 or 2 | |
static inline void HAL_reloadTimer(HAL_Handle handle,const uint_least8_t timerNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// reload the specified timer | |
TIMER_reload(obj->timerHandle[timerNumber]); | |
return; | |
} // end of HAL_reloadTimer() function | |
//! \brief Sets up the GATE object | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
void HAL_setupGate(HAL_Handle handle); | |
//! \brief Starts the timer | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] timerNumber The timer number, 0,1 or 2 | |
static inline void HAL_startTimer(HAL_Handle handle,const uint_least8_t timerNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// start the specified timer | |
TIMER_start(obj->timerHandle[timerNumber]); | |
return; | |
} // end of HAL_startTimer() function | |
//! \brief Stops the timer | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] timerNumber The timer number, 0,1 or 2 | |
static inline void HAL_stopTimer(HAL_Handle handle,const uint_least8_t timerNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// stop the specified timer | |
TIMER_stop(obj->timerHandle[timerNumber]); | |
return; | |
} // end of HAL_stopTimer() function | |
//! \brief Sets the timer period | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] timerNumber The timer number, 0,1 or 2 | |
//! \param[in] period The timer period | |
static inline void HAL_setTimerPeriod(HAL_Handle handle,const uint_least8_t timerNumber, const uint32_t period) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// set the period | |
TIMER_setPeriod(obj->timerHandle[timerNumber], period); | |
return; | |
} // end of HAL_setTimerPeriod() function | |
//! \brief Gets the timer period | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] timerNumber The timer number, 0,1 or 2 | |
//! \return The timer period | |
static inline uint32_t HAL_getTimerPeriod(HAL_Handle handle,const uint_least8_t timerNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
uint32_t timerPeriod = TIMER_getPeriod(obj->timerHandle[timerNumber]); | |
return(timerPeriod); | |
} // end of HAL_getTimerPeriod() function | |
//! \brief Sets the ADC SOC sample delay value | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] socNumber The SOC number | |
//! \param[in] sampleDelay The delay value for the ADC | |
static inline void HAL_setAdcSocSampleDelay(HAL_Handle handle, | |
const ADC_SocNumber_e socNumber, | |
const ADC_SocSampleDelay_e sampleDelay) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
ADC_setSocSampleDelay(obj->adcHandle,socNumber,sampleDelay); | |
return; | |
} // end of HAL_setAdcSocSampleDelay() function | |
//! \brief Sets the ADC bias value | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] sensorType The sensor type | |
//! \param[in] sensorNumber The sensor number | |
//! \param[in] bias The ADC bias value | |
static inline void HAL_setBias(HAL_Handle handle, | |
const HAL_SensorType_e sensorType, | |
uint_least8_t sensorNumber, | |
const _iq bias) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
if(sensorType == HAL_SensorType_Current) | |
{ | |
obj->adcBias.I.value[sensorNumber] = bias; | |
} | |
else if(sensorType == HAL_SensorType_Voltage) | |
{ | |
obj->adcBias.V.value[sensorNumber] = bias; | |
} | |
return; | |
} // end of HAL_setBias() function | |
//! \brief Sets the GPIO pin high | |
//! \details Takes in the enumeration GPIO_Number_e and sets that GPIO | |
//! pin high. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] gpioNumber The GPIO number | |
static inline void HAL_setGpioHigh(HAL_Handle handle,const GPIO_Number_e gpioNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// set GPIO high | |
GPIO_setHigh(obj->gpioHandle,gpioNumber); | |
return; | |
} // end of HAL_setGpioHigh() function | |
//! \brief Toggles the GPIO pin | |
//! \details Takes in the enumeration GPIO_Number_e and toggles that GPIO | |
//! pin. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] gpioNumber The GPIO number | |
static inline void HAL_toggleGpio(HAL_Handle handle,const GPIO_Number_e gpioNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// set GPIO high | |
GPIO_toggle(obj->gpioHandle,gpioNumber); | |
return; | |
} // end of HAL_setGpioHigh() function | |
//! \brief Sets the GPIO pin low | |
//! \details Takes in the enumeration GPIO_Number_e and clears that GPIO | |
//! pin low. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] gpioNumber The GPIO number | |
static inline void HAL_setGpioLow(HAL_Handle handle,const GPIO_Number_e gpioNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// set GPIO low | |
GPIO_setLow(obj->gpioHandle,gpioNumber); | |
return; | |
} // end of HAL_setGpioLow() function | |
//! \brief Sets the current scale factor in the hardware abstraction layer | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] current_sf The current scale factor | |
static inline void HAL_setCurrentScaleFactor(HAL_Handle handle,const _iq current_sf) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
obj->current_sf = current_sf; | |
return; | |
} // end of HAL_setCurrentScaleFactor() function | |
//! \brief Sets the number of current sensors | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] numCurrentSensors The number of current sensors | |
static inline void HAL_setNumCurrentSensors(HAL_Handle handle,const uint_least8_t numCurrentSensors) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
obj->numCurrentSensors = numCurrentSensors; | |
return; | |
} // end of HAL_setNumCurrentSensors() function | |
//! \brief Sets the number of voltage sensors | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] numVoltageSensors The number of voltage sensors | |
static inline void HAL_setNumVoltageSensors(HAL_Handle handle,const uint_least8_t numVoltageSensors) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
obj->numVoltageSensors = numVoltageSensors; | |
return; | |
} // end of HAL_setNumVoltageSensors() function | |
//! \brief Sets the value used to set the low pass filter pole for offset estimation | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] sensorType The sensor type | |
//! \param[in] sensorNumber The sensor number | |
//! \param[in] beta_lp_pu The value used to set the low pass filter pole, pu | |
static inline void HAL_setOffsetBeta_lp_pu(HAL_Handle handle, | |
const HAL_SensorType_e sensorType, | |
const uint_least8_t sensorNumber, | |
const _iq beta_lp_pu) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
if(sensorType == HAL_SensorType_Current) | |
{ | |
OFFSET_setBeta(obj->offsetHandle_I[sensorNumber],beta_lp_pu); | |
} | |
else if(sensorType == HAL_SensorType_Voltage) | |
{ | |
OFFSET_setBeta(obj->offsetHandle_V[sensorNumber],beta_lp_pu); | |
} | |
return; | |
} // end of HAL_setOffsetBeta_lp_pu() function | |
//! \brief Sets the offset initial condition value for offset estimation | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] sensorType The sensor type | |
//! \param[in] sensorNumber The sensor number | |
//! \param[in] initCond The initial condition value | |
static inline void HAL_setOffsetInitCond(HAL_Handle handle, | |
const HAL_SensorType_e sensorType, | |
const uint_least8_t sensorNumber, | |
const _iq initCond) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
if(sensorType == HAL_SensorType_Current) | |
{ | |
OFFSET_setInitCond(obj->offsetHandle_I[sensorNumber],initCond); | |
} | |
else if(sensorType == HAL_SensorType_Voltage) | |
{ | |
OFFSET_setInitCond(obj->offsetHandle_V[sensorNumber],initCond); | |
} | |
return; | |
} // end of HAL_setOffsetInitCond() function | |
//! \brief Sets the initial offset value for offset estimation | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] sensorType The sensor type | |
//! \param[in] sensorNumber The sensor number | |
//! \param[in] value The initial offset value | |
static inline void HAL_setOffsetValue(HAL_Handle handle, | |
const HAL_SensorType_e sensorType, | |
const uint_least8_t sensorNumber, | |
const _iq value) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
if(sensorType == HAL_SensorType_Current) | |
{ | |
OFFSET_setOffset(obj->offsetHandle_I[sensorNumber],value); | |
} | |
else if(sensorType == HAL_SensorType_Voltage) | |
{ | |
OFFSET_setOffset(obj->offsetHandle_V[sensorNumber],value); | |
} | |
return; | |
} // end of HAL_setOffsetValue() function | |
//! \brief Sets the voltage scale factor in the hardware abstraction layer | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] voltage_sf The voltage scale factor | |
static inline void HAL_setVoltageScaleFactor(HAL_Handle handle,const _iq voltage_sf) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
obj->voltage_sf = voltage_sf; | |
return; | |
} // end of HAL_setVoltageScaleFactor() function | |
//! \brief Sets the hardware abstraction layer parameters | |
//! \details Sets up the microcontroller peripherals. Creates all of the scale | |
//! factors for the ADC voltage and current conversions. Sets the initial | |
//! offset values for voltage and current measurements. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pUserParams The pointer to the user parameters | |
extern void HAL_setParams(HAL_Handle handle,const USER_Params *pUserParams); | |
//! \brief Sets up the ADCs (Analog to Digital Converters) | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_setupAdcs(HAL_Handle handle); | |
//! \brief Sets up the clocks | |
//! \details Sets up the micro-controller's main oscillator | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_setupClks(HAL_Handle handle); | |
//! \brief Sets up the FLASH. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_setupFlash(HAL_Handle handle); | |
//! \brief Sets up the GPIO (General Purpose I/O) pins | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_setupGpios(HAL_Handle handle); | |
//! \brief Setup GPIO 0 and 1 as outputs for the LaunchPad project lab 1 experiment | |
//! \details Since the LaunchPad uses the same GPIO pins for LEDs as PWM pins, | |
//! the GPIO 0 and 1 are setup as an extra step. GPIO 1 will be | |
//! kept low so that there is no possibility of shoot-through conduction | |
//! with the high side switch that is controlled by GPIO0. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_setupLaunchPadGpio0and1(HAL_Handle handle); | |
//! \brief Sets up the peripheral clocks | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_setupPeripheralClks(HAL_Handle handle); | |
//! \brief Sets up the PIE (Peripheral Interrupt Expansion) | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_setupPie(HAL_Handle handle); | |
//! \brief Sets up the PLL (Phase Lock Loop) | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] clkFreq The clock frequency | |
extern void HAL_setupPll(HAL_Handle handle,const PLL_ClkFreq_e clkFreq); | |
//! \brief Sets up the PWMs (Pulse Width Modulators) | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] systemFreq_MHz The system frequency, MHz | |
//! \param[in] pwmPeriod_usec The PWM period, usec | |
//! \param[in] numPwmTicksPerIsrTick The number of PWM clock ticks per ISR clock tick | |
extern void HAL_setupPwms(HAL_Handle handle, | |
const float_t systemFreq_MHz, | |
const float_t pwmPeriod_usec, | |
const uint_least16_t numPwmTicksPerIsrTick); | |
//! \brief Sets up the spiA peripheral | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
extern void HAL_setupSpiA(HAL_Handle handle); | |
//! \brief Sets up the timers | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] systemFreq_MHz The system frequency, MHz | |
extern void HAL_setupTimers(HAL_Handle handle,const float_t systemFreq_MHz); | |
//! \brief Updates the ADC bias values | |
//! \details This function is called before the motor is started. It sets the voltage | |
//! and current measurement offsets. | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
static inline void HAL_updateAdcBias(HAL_Handle handle) | |
{ | |
uint_least8_t cnt; | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
_iq bias; | |
// update the current bias | |
for(cnt=0;cnt<HAL_getNumCurrentSensors(handle);cnt++) | |
{ | |
bias = HAL_getBias(handle,HAL_SensorType_Current,cnt); | |
bias += OFFSET_getOffset(obj->offsetHandle_I[cnt]); | |
HAL_setBias(handle,HAL_SensorType_Current,cnt,bias); | |
} | |
// update the voltage bias | |
for(cnt=0;cnt<HAL_getNumVoltageSensors(handle);cnt++) | |
{ | |
bias = HAL_getBias(handle,HAL_SensorType_Voltage,cnt); | |
bias += OFFSET_getOffset(obj->offsetHandle_V[cnt]); | |
HAL_setBias(handle,HAL_SensorType_Voltage,cnt,bias); | |
} | |
return; | |
} // end of HAL_updateAdcBias() function | |
//! \brief Writes DAC data to the PWM comparators for DAC (digital-to-analog conversion) output | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pDacData The pointer to the DAC data | |
static inline void HAL_writeDacData(HAL_Handle handle,HAL_DacData_t *pDacData) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// convert values from _IQ to _IQ15 | |
uint_least8_t cnt; | |
_iq period; | |
_iq dacData_sat_dc; | |
_iq value; | |
uint16_t cmpValue[4]; | |
period = (_iq)pDacData->PeriodMax; | |
for(cnt=0;cnt<4;cnt++) | |
{ | |
dacData_sat_dc = _IQmpy(pDacData->value[cnt], pDacData->gain[cnt]) + pDacData->offset[cnt]; | |
value = _IQmpy(dacData_sat_dc, period); | |
cmpValue[cnt] = (uint16_t)_IQsat(value, period, 0); | |
} | |
// write the DAC data | |
if(obj->pwmDacHandle[PWMDAC_Number_1]) | |
{ | |
PWMDAC_write_CmpA(obj->pwmDacHandle[PWMDAC_Number_1], cmpValue[0]); | |
PWMDAC_write_CmpB(obj->pwmDacHandle[PWMDAC_Number_1], cmpValue[1]); | |
} | |
if(obj->pwmDacHandle[PWMDAC_Number_2]) | |
{ | |
PWMDAC_write_CmpA(obj->pwmDacHandle[PWMDAC_Number_2], cmpValue[2]); | |
PWMDAC_write_CmpB(obj->pwmDacHandle[PWMDAC_Number_2], cmpValue[3]); | |
} | |
return; | |
} // end of HAL_writeDacData() function | |
//! \brief Writes PWM data to the PWM comparators for motor control | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pPwmData The pointer to the PWM data | |
static inline void HAL_writePwmData(HAL_Handle handle,HAL_PwmData_t *pPwmData) | |
{ | |
uint_least8_t cnt; | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
PWM_Obj *pwm; | |
_iq period; | |
_iq pwmData_neg; | |
_iq pwmData_sat; | |
_iq pwmData_sat_dc; | |
_iq value; | |
uint16_t value_sat; | |
for(cnt=0;cnt<3;cnt++) | |
{ | |
pwm = (PWM_Obj *)obj->pwmHandle[cnt]; | |
period = (_iq)pwm->TBPRD; | |
pwmData_neg = _IQmpy(pPwmData->Tabc.value[cnt],_IQ(-1.0)); | |
pwmData_sat = _IQsat(pwmData_neg,_IQ(0.5),_IQ(-0.5)); | |
pwmData_sat_dc = pwmData_sat + _IQ(0.5); | |
value = _IQmpy(pwmData_sat_dc, period); | |
value_sat = (uint16_t)_IQsat(value, period, _IQ(0.0)); | |
// write the PWM data | |
PWM_write_CmpA(obj->pwmHandle[cnt],value_sat); | |
} | |
return; | |
} // end of HAL_writePwmData() function | |
//! \brief Reads PWM compare register A | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pwmNumber The PWM number | |
//! \return The PWM compare value | |
static inline uint16_t HAL_readPwmCmpA(HAL_Handle handle,const PWM_Number_e pwmNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// the compare value to be returned | |
uint16_t pwmValue; | |
pwmValue = PWM_get_CmpA(obj->pwmHandle[pwmNumber]); | |
return(pwmValue); | |
} // end of HAL_readPwmCmpA() function | |
//! \brief Reads PWM compare mirror register A | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pwmNumber The PWM number | |
//! \return The PWM compare value | |
static inline uint16_t HAL_readPwmCmpAM(HAL_Handle handle,const PWM_Number_e pwmNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// the compare value to be returned | |
uint16_t pwmValue; | |
pwmValue = PWM_get_CmpAM(obj->pwmHandle[pwmNumber]); | |
return(pwmValue); | |
} // end of HAL_readPwmCmpAM() function | |
//! \brief Reads PWM compare register B | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pwmNumber The PWM number | |
//! \return The PWM compare value | |
static inline uint16_t HAL_readPwmCmpB(HAL_Handle handle,const PWM_Number_e pwmNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// the compare value to be returned | |
uint16_t pwmValue; | |
pwmValue = PWM_get_CmpB(obj->pwmHandle[pwmNumber]); | |
return(pwmValue); | |
} // end of HAL_readPwmCmpB() function | |
//! \brief Reads PWM period register | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pwmNumber The PWM number | |
//! \return The PWM period value | |
static inline uint16_t HAL_readPwmPeriod(HAL_Handle handle,const PWM_Number_e pwmNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// the period value to be returned | |
uint16_t pwmPeriodValue; | |
pwmPeriodValue = PWM_getPeriod(obj->pwmHandle[pwmNumber]); | |
return(pwmPeriodValue); | |
} // end of HAL_readPwmPeriod() function | |
//! \brief Set trigger point in the middle of the low side pulse | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] ignoreShunt The low side shunt that should be ignored | |
//! \param[in] midVolShunt The middle length of output voltage | |
static inline void HAL_setTrigger(HAL_Handle handle,const SVGENCURRENT_IgnoreShunt_e ignoreShunt, | |
const SVGENCURRENT_VmidShunt_e midVolShunt) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
PWM_Obj *pwm1 = (PWM_Obj *)obj->pwmHandle[PWM_Number_1]; | |
PWM_Obj *pwm2 = (PWM_Obj *)obj->pwmHandle[PWM_Number_2]; | |
PWM_Obj *pwm3 = (PWM_Obj *)obj->pwmHandle[PWM_Number_3]; | |
PWM_Obj *pwm; | |
uint16_t nextPulse1 = (pwm1->CMPA + pwm1->CMPAM) / 2; | |
uint16_t nextPulse2 = (pwm2->CMPA + pwm2->CMPAM) / 2; | |
uint16_t nextPulse3 = (pwm3->CMPA + pwm3->CMPAM) / 2; | |
uint16_t pwmCMPA1 = pwm1->CMPA; | |
uint16_t pwmCMPA2 = pwm2->CMPA; | |
uint16_t pwmCMPA3 = pwm3->CMPA; | |
if(ignoreShunt == use_all) | |
{ | |
if((nextPulse1 <= nextPulse2) && (nextPulse1 <= nextPulse3)) | |
{ | |
pwm = pwm1; | |
} | |
else if((nextPulse2 <= nextPulse1) && (nextPulse2 <= nextPulse3)) | |
{ | |
pwm = pwm2; | |
} | |
else | |
{ | |
pwm = pwm3; | |
} | |
} | |
else | |
{ | |
if(midVolShunt == Vmid_a) | |
{ | |
pwm = pwm1; | |
} | |
else if(midVolShunt == Vmid_b) | |
{ | |
pwm = pwm2; | |
} | |
else | |
{ | |
pwm = pwm3; | |
} | |
} | |
if(pwm->CMPAM >= (pwm->CMPA + pwm->DBFED)) | |
{ | |
pwm1->CMPB = (pwm->CMPAM - (pwm->CMPA + pwm->DBFED)) / 2 + 1; | |
PWM_setSocAPulseSrc(obj->pwmHandle[PWM_Number_1],PWM_SocPulseSrc_CounterEqualCmpBDecr); | |
} | |
else | |
{ | |
pwm1->CMPB = ((pwm->CMPA + pwm->DBFED) - pwm->CMPAM ) / 2 + 1; | |
PWM_setSocAPulseSrc(obj->pwmHandle[PWM_Number_1],PWM_SocPulseSrc_CounterEqualCmpBIncr); | |
} | |
// inhibit unintended pwm output from out of range of the deadband | |
if(pwm1->CMPB >= pwm1->TBPRD) pwm1->CMPB = 0; | |
return; | |
} // end of HAL_setTrigger() function | |
//! \brief Selects the analog channel used for calibration | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] chanNumber The channel number | |
void HAL_AdcCalChanSelect(HAL_Handle handle, const ADC_SocChanNumber_e chanNumber); | |
//! \brief Reads the converted value from the selected calibration channel | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \return The converted value | |
uint16_t HAL_AdcCalConversion(HAL_Handle handle); | |
//! \brief Executes the offset calibration of the ADC | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
void HAL_AdcOffsetSelfCal(HAL_Handle handle); | |
//! \brief Converts coarse and fine oscillator trim values into a single 16bit word value | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] coarse The coarse trim portion of the oscillator trim | |
//! \param[in] fine The fine trim portion of the oscillator trim | |
//! \return The combined trim value | |
uint16_t HAL_getOscTrimValue(int16_t coarse, int16_t fine); | |
//! \brief Executes the oscillator 1 and 2 calibration functions | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
void HAL_OscTempComp(HAL_Handle handle); | |
//! \brief Executes the oscillator 1 calibration based on input sample | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
void HAL_osc1Comp(HAL_Handle handle, const int16_t sensorSample); | |
//! \brief Executes the oscillator 2 calibration based on input sample | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
void HAL_osc2Comp(HAL_Handle handle, const int16_t sensorSample); | |
// Added by Maya | |
extern HAL_Handle halHandle; | |
extern void HAL_setupSCI(HAL_Handle handle); | |
//SCIA | |
extern SCI_FifoStatus_e HAL_sciaGetRxFifoStatus(HAL_Handle handle); | |
extern void HAL_sciaWrite(HAL_Handle handle, const uint16_t data); | |
extern void HAL_sciaWriteMsg(HAL_Handle handle, char * msg); | |
extern uint16_t HAL_sciaRead(HAL_Handle handle); | |
extern void HAL_sciaClearRxFifoOvf(HAL_Handle handle); | |
extern void HAL_sciaClearRxFifoInt(HAL_Handle handle); | |
extern void HAL_sciaClearTxFifoInt(HAL_Handle handle); | |
extern void HAL_sciaEnableRxInt(HAL_Handle handle); | |
extern void HAL_sciaDisableRxInt(HAL_Handle handle); | |
extern void HAL_sciaEnableTxInt(HAL_Handle handle); | |
extern void HAL_sciaDisableTxInt(HAL_Handle handle); | |
extern bool HAL_sciaTxReady(HAL_Handle handle); | |
extern bool HAL_sciaTxEmpty(HAL_Handle handle); | |
extern bool HAL_sciaRxParityError(HAL_Handle handle); | |
extern bool HAL_sciaRxOverrunError(HAL_Handle handle); | |
extern bool HAL_sciaRxFrameError(HAL_Handle handle); | |
extern void HAL_sciaEnable(HAL_Handle handle); | |
extern void HAL_sciaDisable(HAL_Handle handle); | |
// Added by Maya | |
extern void HAL_pieAckInt(HAL_Handle handle, const PIE_GroupNumber_e groupNumber); | |
extern void HAL_enablePieInt(HAL_Handle handle); | |
// Added by Dmitri Ranfft on 16.09.2015 | |
extern void HAL_setupCAP(HAL_Handle handle); | |
//! \brief Writes data to the driver | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] Spi_8305_Vars SPI variables | |
void HAL_writeDrvData(HAL_Handle handle, DRV_SPI_8305_Vars_t *Spi_8305_Vars); | |
//! \brief Reads data from the driver | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] Spi_8305_Vars SPI variables | |
void HAL_readDrvData(HAL_Handle handle, DRV_SPI_8305_Vars_t *Spi_8305_Vars); | |
//! \brief Sets up the SPI interface for the driver | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] Spi_8305_Vars SPI variables | |
void HAL_setupDrvSpi(HAL_Handle handle, DRV_SPI_8305_Vars_t *Spi_8305_Vars); | |
//! \brief Writes DAC data to the PWM comparators for DAC (digital-to-analog conversion) output | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] pDacData The pointer to the DAC data | |
void HAL_setDacParameters(HAL_Handle handle, HAL_DacData_t *pDacData); | |
#ifdef HW_POT | |
//! \brief Reads the Potentiometer | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \return The potentiometer value from _IQ(-1.0) to _IQ(1.0) | |
static inline _iq HAL_readPotentiometerData(HAL_Handle handle, const ADC_ResultNumber_e adcResultNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
_iq value; | |
// covert potentiometer from IQ12 to IQ24. | |
value = _IQ12toIQ((_iq)ADC_readResult(obj->adcHandle, adcResultNumber/*ADC_ResultNumber_8*/)); | |
return (value); | |
} // end of HAL_readPotentiometerData() function | |
#endif | |
#ifdef HW_SW | |
//! \brief Reads te specified GPIO pin | |
//! \details Takes in the enumeration GPIO_Number_e and reads that GPIO | |
//! \param[in] handle The hardware abstraction layer (HAL) handle | |
//! \param[in] gpioNumber The GPIO number | |
static inline bool HAL_readGpio(HAL_Handle handle, const GPIO_Number_e gpioNumber) | |
{ | |
HAL_Obj *obj = (HAL_Obj *)handle; | |
// read GPIO | |
return (GPIO_read(obj->gpioHandle, gpioNumber)); | |
} // end of HAL_readGpio() function | |
#endif // HW_SW | |
#ifdef __cplusplus | |
} | |
#endif // extern "C" | |
//@} // ingroup | |
#endif // end of _HAL_H_ definition | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment