Created
February 29, 2020 20:50
-
-
Save dtellogaete/74c0e6cb529fb0c8b8df01eabbeb4759 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Algoritmo de gradient descent | |
class LogisticRegressionGD(object): | |
def __init__(self, l_rate = 0.1, n_iter =10000, random_state =1): | |
self.l_rate = l_rate | |
self.n_iter = n_iter | |
self.random_state = random_state | |
def fit(self, X, y): | |
rgen = np.random.RandomState(self.random_state) | |
self.theta = rgen.normal(loc = 0.0, scale = 0.01, | |
size = 1 + X.shape[1]) | |
for i in range(self.n_iter): | |
net_input = self.net_input(X) | |
h = self.sigmoid(net_input) | |
errors = y-h | |
self.theta[1:] += -self.l_rate*X.T.dot(errors) | |
self.theta[0] += -self.l_rate*errors.sum() | |
return self.theta | |
def sigmoid(self, z): | |
return 1. / (1. + np.exp(-np.clip(z, -250, 250))) | |
def net_input(self, X): | |
return np.dot(X, self.theta[1:]) + self.theta[0] | |
def predict(self, X): | |
return np.where(self.sigmoid(self.net_input(X))>= 0.5, 0, 1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment