Last active
March 16, 2023 15:01
-
-
Save dvruette/e8ec21928b278f822c410216c42a6652 to your computer and use it in GitHub Desktop.
Adam#Lion
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Based on: https://github.com/lucidrains/lion-pytorch/blob/main/lion_pytorch/lion_pytorch.py | |
""" | |
from typing import Tuple, Optional, Callable | |
import torch | |
from torch.optim.optimizer import Optimizer | |
def exists(val): | |
return val is not None | |
class AdamOnLion(Optimizer): | |
def __init__( | |
self, | |
params, | |
lr: float = 1e-4, | |
betas: Tuple[float, float] = (0.9, 0.999), | |
gammas: Tuple[float, float] = (0.9, 0.99), | |
eps: float = 1e-8, | |
weight_decay: float = 0.0, | |
use_triton: bool = False | |
): | |
assert lr > 0. | |
assert all([0. <= beta <= 1. for beta in betas]) | |
assert all([0. <= gamma <= 1. for gamma in gammas]) | |
assert eps > 0. | |
defaults = dict( | |
lr = lr, | |
betas = betas, | |
gammas = gammas, | |
eps = eps, | |
weight_decay = weight_decay | |
) | |
super().__init__(params, defaults) | |
def update_fn(self, p, grad, m_lion, m_adam, v_adam, lr, wd, beta1, beta2, gamma1, gamma2, eps, step): | |
# stepweight decay | |
grad.add_(p, alpha = wd) | |
m_adam.mul_(beta1).add_(grad, alpha = 1 - beta1) | |
v_adam.mul_(beta2).addcmul_(grad, grad, value = 1 - beta2) | |
m_ = m_adam.clone().div_(1 - beta1**step) | |
v_ = v_adam.clone().div_(1 - beta2**step) | |
# weight update | |
adam_update = m_.div_(v_.sqrt().add_(eps)) | |
lion_update = m_lion.clone().mul_(gamma1).add(grad, alpha = 1 - gamma1).sign_() | |
magnitude = torch.norm(adam_update) / torch.norm(lion_update) | |
update = lion_update.mul_(magnitude) | |
p.add_(update, alpha = -lr) | |
# decay the momentum running average coefficient | |
m_lion.mul_(gamma2).add_(grad, alpha = 1 - gamma2) | |
@torch.no_grad() | |
def step( | |
self, | |
closure: Optional[Callable] = None | |
): | |
loss = None | |
if exists(closure): | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
for p in filter(lambda p: exists(p.grad), group['params']): | |
grad, lr, wd, gamma1, gamma2, beta1, beta2, eps, state = p.grad, group['lr'], group['weight_decay'], *group['gammas'], *group['betas'], group['eps'], self.state[p] | |
# init state - exponential moving average of gradient values | |
if len(state) == 0: | |
state['m_lion'] = torch.zeros_like(p) | |
state['m_adam'] = torch.zeros_like(p) | |
state['v_adam'] = torch.zeros_like(p) | |
state['step'] = 1 | |
m_lion = state['m_lion'] | |
m_adam = state['m_adam'] | |
v_adam = state['v_adam'] | |
step = state['step'] | |
self.update_fn( | |
p, | |
grad, | |
m_lion, | |
m_adam, | |
v_adam, | |
lr, | |
wd, | |
beta1, | |
beta2, | |
gamma1, | |
gamma2, | |
eps, | |
step | |
) | |
state['step'] += 1 | |
return loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment