Created
February 4, 2022 02:24
-
-
Save eileen-code4fun/cc477e3fd3cd33e79fc1a0615f531299 to your computer and use it in GitHub Desktop.
SQL Translation Model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Nl2SqlTranslator(tf.keras.Model): | |
def __init__(self, nl_text_processor, sql_text_processor, fixed_embedding, unit=128): | |
super().__init__() | |
# Natural language | |
self.nl_text_processor = nl_text_processor | |
self.nl_voba_size = len(nl_text_processor.get_vocabulary()) | |
self.nl_embedding = tf.keras.layers.Embedding( | |
self.nl_voba_size, | |
output_dim=unit, | |
mask_zero=True) | |
self.fixed_embedding = fixed_embedding | |
self.nl_rnn = tf.keras.layers.Bidirectional(layer=tf.keras.layers.LSTM(int(unit/2), return_sequences=True, return_state=True)) | |
# Attention | |
self.attention = tf.keras.layers.Attention() | |
# SQL | |
self.sql_text_processor = sql_text_processor | |
self.sql_voba_size = len(sql_text_processor.get_vocabulary()) | |
self.sql_embedding = tf.keras.layers.Embedding( | |
self.sql_voba_size, | |
output_dim=unit, | |
mask_zero=True) | |
self.sql_rnn = tf.keras.layers.LSTM(unit, return_sequences=True, return_state=True) | |
# Output | |
self.out = tf.keras.layers.Dense(self.sql_voba_size) | |
def call(self, nl_text, sql_text, training=True): | |
nl_tokens = self.nl_text_processor(nl_text) # Shape: (batch, Ts) | |
nl_vectors = self.nl_embedding(nl_tokens, training=training) # Shape: (batch, Ts, embedding_dim) | |
nl_fixed_vectors = self.fixed_embedding(nl_tokens) # Shape: (batch, Ts, 100) | |
nl_combined_vectors = tf.concat([nl_vectors, nl_fixed_vectors], -1) # Shape: (batch, Ts, embedding_dim+100) | |
nl_rnn_out, fhstate, fcstate, bhstate, bcstate = self.nl_rnn(nl_vectors, training=training) # Shape: (batch, Ts, bi_rnn_output_dim), (batch, rnn_output_dim) ... | |
nl_hstate = tf.concat([fhstate, bhstate], -1) | |
nl_cstate = tf.concat([fcstate, bcstate], -1) | |
sql_tokens = self.sql_text_processor(sql_text) # Shape: (batch, Te) | |
expected = sql_tokens[:,1:] # Shape: (batch, Te-1) | |
teacher_forcing = sql_tokens[:,:-1] # Shape: (batch, Te-1) | |
sql_vectors = self.sql_embedding(teacher_forcing, training=training) # Shape: (batch, Te-1, embedding_dim) | |
sql_in = self.attention(inputs=[sql_vectors,nl_rnn_out], mask=[sql_vectors._keras_mask, nl_rnn_out._keras_mask], training=training) | |
trans_vectors, _, _ = self.sql_rnn(sql_in, initial_state=[nl_hstate, nl_cstate], training=training) # Shape: (batch, Te-1, rnn_output_dim) | |
out = self.out(trans_vectors, training=training) # Shape: (batch, Te-1, sql_vocab_size) | |
return out, expected, out._keras_mask |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment