Created
February 10, 2023 07:35
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from principalfft import PrincipalFFT | |
from numpy.fft import rfft | |
from sklearn.model_selection import train_test_split | |
from sklearn.datasets import load_digits | |
from sklearn.ensemble import RandomForestClassifier | |
mnist = load_digits() | |
X, y = mnist.data, mnist.target | |
Xfft = PrincipalFFT(n_components=8).fit_transform(X) | |
Xfft_full = np.abs(rfft(X)) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) | |
Xfft_train, Xfft_test, yfft_train, yfft_test = train_test_split(Xfft, y, test_size=0.3) | |
Xfft_full_train, Xfft_full_test, yfft_full_train, yfft_full_test = train_test_split(Xfft_full, y, test_size=0.3) | |
clf = RandomForestClassifier(50, min_samples_leaf=5, random_state=0).fit(X_train, y_train) | |
print("Raw score", clf.score(X_test, y_test)) | |
clf = RandomForestClassifier(50, min_samples_leaf=5, random_state=0).fit(Xfft_full_train, yfft_full_train) | |
print("FFT (full) score", clf.score(Xfft_full_test, yfft_full_test)) | |
clf = RandomForestClassifier(50, min_samples_leaf=5, random_state=0).fit(Xfft_train, yfft_train) | |
print("FFT (k=1/4) score", clf.score(Xfft_test, yfft_test)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment