Skip to content

Instantly share code, notes, and snippets.

@emondarock
Created June 17, 2020 18:38
Show Gist options
  • Save emondarock/ae7ae217d46896b8d57d83248b2c4b2f to your computer and use it in GitHub Desktop.
Save emondarock/ae7ae217d46896b8d57d83248b2c4b2f to your computer and use it in GitHub Desktop.
//Importing Libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
//Import CSV File
data_frame = pd.read_csv('pima-data.csv')
//Check CSV File
data_frame.shape
data_frame.head(3)
data_frame.tail(4)
//Check If Any Data Contains Null
print(data_frame.isnull().values.any())
//Correlation HeatMap
# Here size means plot-size
def corr_heatmap(data_frame, size=11):
# Getting correlation using Pandas
correlation = data_frame.corr()
# Dividing the plot into subplots for increasing size of plots
fig, heatmap = plt.subplots(figsize=(size, size))
# Plotting the correlation heatmap
heatmap.matshow(correlation)
# Adding xticks and yticks
plt.xticks(range(len(correlation.columns)), correlation.columns)
plt.yticks(range(len(correlation.columns)), correlation.columns)
# Displaying the graph
plt.show()
corr_heatmap(data_frame, 12)
//Clean same type data
# Deleting 'skin' column completely
del data_frame['skin']
# Checking if the action was successful or not
data_frame.head()
//Mapping bool to int
# Mapping the values
map_diabetes = {True : 1, False : 0}
# Setting the map to the data_frame
data_frame['diabetes'] = data_frame['diabetes'].map(map_diabetes)
# Let's see what we have done
data_frame.head()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment