Created
January 29, 2019 01:09
-
-
Save eric612/08c1480456cceabe18323008dfd2fd0f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "remove_bn" | |
| layer { | |
| name: "data" | |
| type: "Input" | |
| top: "data" | |
| input_param { | |
| shape { | |
| dim: 1 | |
| dim: 3 | |
| dim: 320 | |
| dim: 320 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv0" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv0" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv0/relu" | |
| type: "ReLU" | |
| bottom: "conv0" | |
| top: "conv0" | |
| } | |
| layer { | |
| name: "conv1/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv0" | |
| top: "conv1/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 32 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv1/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv1/dw" | |
| top: "conv1/dw" | |
| } | |
| layer { | |
| name: "conv1" | |
| type: "Convolution" | |
| bottom: "conv1/dw" | |
| top: "conv1" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/relu" | |
| type: "ReLU" | |
| bottom: "conv1" | |
| top: "conv1" | |
| } | |
| layer { | |
| name: "conv2/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv1" | |
| top: "conv2/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 64 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv2/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv2/dw" | |
| top: "conv2/dw" | |
| } | |
| layer { | |
| name: "conv2" | |
| type: "Convolution" | |
| bottom: "conv2/dw" | |
| top: "conv2" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv2/relu" | |
| type: "ReLU" | |
| bottom: "conv2" | |
| top: "conv2" | |
| } | |
| layer { | |
| name: "conv3/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv2" | |
| top: "conv3/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 128 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv3/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv3/dw" | |
| top: "conv3/dw" | |
| } | |
| layer { | |
| name: "conv3" | |
| type: "Convolution" | |
| bottom: "conv3/dw" | |
| top: "conv3" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv3/relu" | |
| type: "ReLU" | |
| bottom: "conv3" | |
| top: "conv3" | |
| } | |
| layer { | |
| name: "conv4/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv3" | |
| top: "conv4/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 128 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv4/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv4/dw" | |
| top: "conv4/dw" | |
| } | |
| layer { | |
| name: "conv4" | |
| type: "Convolution" | |
| bottom: "conv4/dw" | |
| top: "conv4" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv4/relu" | |
| type: "ReLU" | |
| bottom: "conv4" | |
| top: "conv4" | |
| } | |
| layer { | |
| name: "conv5/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv4" | |
| top: "conv5/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 256 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv5/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv5/dw" | |
| top: "conv5/dw" | |
| } | |
| layer { | |
| name: "conv5" | |
| type: "Convolution" | |
| bottom: "conv5/dw" | |
| top: "conv5" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv5/relu" | |
| type: "ReLU" | |
| bottom: "conv5" | |
| top: "conv5" | |
| } | |
| layer { | |
| name: "conv6/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv5" | |
| top: "conv6/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 256 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv6/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv6/dw" | |
| top: "conv6/dw" | |
| } | |
| layer { | |
| name: "conv6" | |
| type: "Convolution" | |
| bottom: "conv6/dw" | |
| top: "conv6" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv6/relu" | |
| type: "ReLU" | |
| bottom: "conv6" | |
| top: "conv6" | |
| } | |
| layer { | |
| name: "conv7/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv6" | |
| top: "conv7/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv7/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv7/dw" | |
| top: "conv7/dw" | |
| } | |
| layer { | |
| name: "conv7" | |
| type: "Convolution" | |
| bottom: "conv7/dw" | |
| top: "conv7" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv7/relu" | |
| type: "ReLU" | |
| bottom: "conv7" | |
| top: "conv7" | |
| } | |
| layer { | |
| name: "conv8/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv7" | |
| top: "conv8/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv8/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv8/dw" | |
| top: "conv8/dw" | |
| } | |
| layer { | |
| name: "conv8" | |
| type: "Convolution" | |
| bottom: "conv8/dw" | |
| top: "conv8" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/relu" | |
| type: "ReLU" | |
| bottom: "conv8" | |
| top: "conv8" | |
| } | |
| layer { | |
| name: "conv9/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv8" | |
| top: "conv9/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv9/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv9/dw" | |
| top: "conv9/dw" | |
| } | |
| layer { | |
| name: "conv9" | |
| type: "Convolution" | |
| bottom: "conv9/dw" | |
| top: "conv9" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv9/relu" | |
| type: "ReLU" | |
| bottom: "conv9" | |
| top: "conv9" | |
| } | |
| layer { | |
| name: "conv10/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv9" | |
| top: "conv10/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv10/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv10/dw" | |
| top: "conv10/dw" | |
| } | |
| layer { | |
| name: "conv10" | |
| type: "Convolution" | |
| bottom: "conv10/dw" | |
| top: "conv10" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv10/relu" | |
| type: "ReLU" | |
| bottom: "conv10" | |
| top: "conv10" | |
| } | |
| layer { | |
| name: "conv11/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv10" | |
| top: "conv11/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv11/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv11/dw" | |
| top: "conv11/dw" | |
| } | |
| layer { | |
| name: "conv11" | |
| type: "Convolution" | |
| bottom: "conv11/dw" | |
| top: "conv11" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv11/relu" | |
| type: "ReLU" | |
| bottom: "conv11" | |
| top: "conv11" | |
| } | |
| layer { | |
| name: "conv12/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv11" | |
| top: "conv12/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv12/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv12/dw" | |
| top: "conv12/dw" | |
| } | |
| layer { | |
| name: "conv12" | |
| type: "Convolution" | |
| bottom: "conv12/dw" | |
| top: "conv12" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv12/relu" | |
| type: "ReLU" | |
| bottom: "conv12" | |
| top: "conv12" | |
| } | |
| layer { | |
| name: "conv13/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv12" | |
| top: "conv13/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 1024 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv13/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv13/dw" | |
| top: "conv13/dw" | |
| } | |
| layer { | |
| name: "conv13" | |
| type: "Convolution" | |
| bottom: "conv13/dw" | |
| top: "conv13" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv13/relu" | |
| type: "ReLU" | |
| bottom: "conv13" | |
| top: "conv13" | |
| } | |
| layer { | |
| name: "conv15/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv13" | |
| top: "conv15/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 1024 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv15/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv15/dw" | |
| top: "conv15/dw" | |
| } | |
| layer { | |
| name: "conv15" | |
| type: "Convolution" | |
| bottom: "conv15/dw" | |
| top: "conv15" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv15/relu" | |
| type: "ReLU" | |
| bottom: "conv15" | |
| top: "conv15" | |
| } | |
| layer { | |
| name: "conv16_new" | |
| type: "Convolution" | |
| bottom: "conv15" | |
| top: "conv16_new" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv16_new/relu" | |
| type: "ReLU" | |
| bottom: "conv16_new" | |
| top: "conv16_new" | |
| } | |
| layer { | |
| name: "upsample_new" | |
| type: "Upsample" | |
| bottom: "conv16_new" | |
| top: "upsample_new" | |
| upsample_param { | |
| scale: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv17/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv11" | |
| top: "conv17/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv17/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv17/dw" | |
| top: "conv17/dw" | |
| } | |
| layer { | |
| name: "conv17" | |
| type: "Convolution" | |
| bottom: "conv17/dw" | |
| top: "conv17" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv17/relu" | |
| type: "ReLU" | |
| bottom: "conv17" | |
| top: "conv17" | |
| } | |
| layer { | |
| name: "conv17/sum" | |
| type: "Eltwise" | |
| bottom: "upsample_new" | |
| bottom: "conv17" | |
| top: "conv17/sum" | |
| } | |
| layer { | |
| name: "conv18_plus" | |
| type: "Convolution" | |
| bottom: "conv17/sum" | |
| top: "conv18_plus" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv18_plus/relu" | |
| type: "ReLU" | |
| bottom: "conv18_plus" | |
| top: "conv18_plus" | |
| } | |
| layer { | |
| name: "conv18/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv18_plus" | |
| top: "conv18/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "conv18/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv18/dw" | |
| top: "conv18/dw" | |
| } | |
| layer { | |
| name: "conv18_new" | |
| type: "Convolution" | |
| bottom: "conv18/dw" | |
| top: "conv18_new" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: true | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv18_new/relu" | |
| type: "ReLU" | |
| bottom: "conv18_new" | |
| top: "conv18_new" | |
| } | |
| layer { | |
| name: "conv22" | |
| type: "Convolution" | |
| bottom: "conv15" | |
| top: "conv22" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 255 | |
| bias_term: true | |
| pad: 0 | |
| kernel_size: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| value: 0.0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv23_new" | |
| type: "Convolution" | |
| bottom: "conv18_new" | |
| top: "conv23_new" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 255 | |
| bias_term: true | |
| pad: 0 | |
| kernel_size: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| value: 0.0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "detection_out" | |
| type: "Yolov3DetectionOutput" | |
| bottom: "conv22" | |
| bottom: "conv23_new" | |
| top: "detection_out" | |
| include { | |
| phase: TEST | |
| } | |
| yolov3_detection_output_param { | |
| num_classes: 80 | |
| confidence_threshold: 0.300000011921 | |
| nms_threshold: 0.449999988079 | |
| biases: 10.0 | |
| biases: 14.0 | |
| biases: 23.0 | |
| biases: 27.0 | |
| biases: 37.0 | |
| biases: 58.0 | |
| biases: 81.0 | |
| biases: 82.0 | |
| biases: 135.0 | |
| biases: 169.0 | |
| biases: 344.0 | |
| biases: 319.0 | |
| anchors_scale: 32 | |
| anchors_scale: 16 | |
| mask_group_num: 2 | |
| mask: 3 | |
| mask: 4 | |
| mask: 5 | |
| mask: 0 | |
| mask: 1 | |
| mask: 2 | |
| } | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment