Last active
December 11, 2018 05:28
-
-
Save eric612/110f5f5a2edad80c0c9074c7a532347b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "MobileNet-YOLO" | |
layer { | |
name: "data" | |
type: "AnnotatedData" | |
top: "data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
scale: 0.007843 | |
mirror: true | |
mean_value: 127.5 | |
mean_value: 127.5 | |
mean_value: 127.5 | |
force_color: true | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 608 | |
width: 608 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 416 | |
width: 416 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 320 | |
width: 320 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 352 | |
width: 352 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 384 | |
width: 384 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 448 | |
width: 448 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 480 | |
width: 480 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 512 | |
width: 512 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 544 | |
width: 544 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
resize_param { | |
prob: 0.1 | |
resize_mode: WARP | |
height: 576 | |
width: 576 | |
interp_mode: LINEAR | |
interp_mode: AREA | |
interp_mode: LANCZOS4 | |
} | |
emit_constraint { | |
emit_type: CENTER | |
} | |
distort_param { | |
brightness_prob: 0.5 | |
brightness_delta: 32.0 | |
contrast_prob: 0.5 | |
contrast_lower: 0.5 | |
contrast_upper: 1.5 | |
hue_prob: 0.5 | |
hue_delta: 18.0 | |
saturation_prob: 0.5 | |
saturation_lower: 0.5 | |
saturation_upper: 1.5 | |
random_order_prob: 0.0 | |
} | |
expand_param { | |
prob: 0.5 | |
max_expand_ratio: 2.0 | |
} | |
} | |
data_param { | |
source: "examples/coco/coco_train_lmdb" | |
batch_size: 7 | |
backend: LMDB | |
} | |
annotated_data_param { | |
yolo_data_type : 1 | |
batch_sampler { | |
max_sample: 1 | |
max_trials: 1 | |
} | |
batch_sampler { | |
sampler { | |
min_scale: 0.3 | |
max_scale: 1.0 | |
min_aspect_ratio: 0.5 | |
max_aspect_ratio: 2.0 | |
} | |
sample_constraint { | |
min_jaccard_overlap: 0.1 | |
} | |
max_sample: 1 | |
max_trials: 50 | |
} | |
batch_sampler { | |
sampler { | |
min_scale: 0.3 | |
max_scale: 1.0 | |
min_aspect_ratio: 0.5 | |
max_aspect_ratio: 2.0 | |
} | |
sample_constraint { | |
min_jaccard_overlap: 0.3 | |
} | |
max_sample: 1 | |
max_trials: 50 | |
} | |
batch_sampler { | |
sampler { | |
min_scale: 0.3 | |
max_scale: 1.0 | |
min_aspect_ratio: 0.5 | |
max_aspect_ratio: 2.0 | |
} | |
sample_constraint { | |
min_jaccard_overlap: 0.5 | |
} | |
max_sample: 1 | |
max_trials: 50 | |
} | |
batch_sampler { | |
sampler { | |
min_scale: 0.3 | |
max_scale: 1.0 | |
min_aspect_ratio: 0.5 | |
max_aspect_ratio: 2.0 | |
} | |
sample_constraint { | |
min_jaccard_overlap: 0.7 | |
} | |
max_sample: 1 | |
max_trials: 50 | |
} | |
batch_sampler { | |
sampler { | |
min_scale: 0.3 | |
max_scale: 1.0 | |
min_aspect_ratio: 0.5 | |
max_aspect_ratio: 2.0 | |
} | |
sample_constraint { | |
min_jaccard_overlap: 0.9 | |
} | |
max_sample: 1 | |
max_trials: 50 | |
} | |
batch_sampler { | |
sampler { | |
min_scale: 0.3 | |
max_scale: 1.0 | |
min_aspect_ratio: 0.5 | |
max_aspect_ratio: 2.0 | |
} | |
sample_constraint { | |
max_jaccard_overlap: 1.0 | |
} | |
max_sample: 1 | |
max_trials: 50 | |
} | |
label_map_file: "data/coco/labelmap_coco.prototxt" | |
} | |
} | |
layer { | |
name: "conv0" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv0" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv0/bn" | |
type: "BatchNorm" | |
bottom: "conv0" | |
top: "conv0" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv0/scale" | |
type: "Scale" | |
bottom: "conv0" | |
top: "conv0" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv0/relu" | |
type: "ReLU" | |
bottom: "conv0" | |
top: "conv0" | |
} | |
layer { | |
name: "conv1/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv0" | |
top: "conv1/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 32 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv1/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv1/dw" | |
top: "conv1/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv1/dw/scale" | |
type: "Scale" | |
bottom: "conv1/dw" | |
top: "conv1/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv1/dw/relu" | |
type: "ReLU" | |
bottom: "conv1/dw" | |
top: "conv1/dw" | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "conv1/dw" | |
top: "conv1" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 64 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv1/bn" | |
type: "BatchNorm" | |
bottom: "conv1" | |
top: "conv1" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv1/scale" | |
type: "Scale" | |
bottom: "conv1" | |
top: "conv1" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv1/relu" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "conv2/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv1" | |
top: "conv2/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 64 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
group: 64 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv2/dw" | |
top: "conv2/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv2/dw/scale" | |
type: "Scale" | |
bottom: "conv2/dw" | |
top: "conv2/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv2/dw/relu" | |
type: "ReLU" | |
bottom: "conv2/dw" | |
top: "conv2/dw" | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "conv2/dw" | |
top: "conv2" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2/bn" | |
type: "BatchNorm" | |
bottom: "conv2" | |
top: "conv2" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv2/scale" | |
type: "Scale" | |
bottom: "conv2" | |
top: "conv2" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv2/relu" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "conv3/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv2" | |
top: "conv3/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 128 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv3/dw" | |
top: "conv3/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv3/dw/scale" | |
type: "Scale" | |
bottom: "conv3/dw" | |
top: "conv3/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv3/dw/relu" | |
type: "ReLU" | |
bottom: "conv3/dw" | |
top: "conv3/dw" | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "conv3/dw" | |
top: "conv3" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3/bn" | |
type: "BatchNorm" | |
bottom: "conv3" | |
top: "conv3" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv3/scale" | |
type: "Scale" | |
bottom: "conv3" | |
top: "conv3" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv3/relu" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "conv4/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv3" | |
top: "conv4/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
group: 128 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv4/dw" | |
top: "conv4/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv4/dw/scale" | |
type: "Scale" | |
bottom: "conv4/dw" | |
top: "conv4/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv4/dw/relu" | |
type: "ReLU" | |
bottom: "conv4/dw" | |
top: "conv4/dw" | |
} | |
layer { | |
name: "conv4" | |
type: "Convolution" | |
bottom: "conv4/dw" | |
top: "conv4" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 256 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4/bn" | |
type: "BatchNorm" | |
bottom: "conv4" | |
top: "conv4" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv4/scale" | |
type: "Scale" | |
bottom: "conv4" | |
top: "conv4" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv4/relu" | |
type: "ReLU" | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layer { | |
name: "conv5/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv4" | |
top: "conv5/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 256 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 256 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv5/dw" | |
top: "conv5/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv5/dw/scale" | |
type: "Scale" | |
bottom: "conv5/dw" | |
top: "conv5/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv5/dw/relu" | |
type: "ReLU" | |
bottom: "conv5/dw" | |
top: "conv5/dw" | |
} | |
layer { | |
name: "conv5" | |
type: "Convolution" | |
bottom: "conv5/dw" | |
top: "conv5" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 256 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5/bn" | |
type: "BatchNorm" | |
bottom: "conv5" | |
top: "conv5" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv5/scale" | |
type: "Scale" | |
bottom: "conv5" | |
top: "conv5" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv5/relu" | |
type: "ReLU" | |
bottom: "conv5" | |
top: "conv5" | |
} | |
layer { | |
name: "conv6/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv5" | |
top: "conv6/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 256 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
group: 256 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv6/dw" | |
top: "conv6/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv6/dw/scale" | |
type: "Scale" | |
bottom: "conv6/dw" | |
top: "conv6/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv6/dw/relu" | |
type: "ReLU" | |
bottom: "conv6/dw" | |
top: "conv6/dw" | |
} | |
layer { | |
name: "conv6" | |
type: "Convolution" | |
bottom: "conv6/dw" | |
top: "conv6" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6/bn" | |
type: "BatchNorm" | |
bottom: "conv6" | |
top: "conv6" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv6/scale" | |
type: "Scale" | |
bottom: "conv6" | |
top: "conv6" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv6/relu" | |
type: "ReLU" | |
bottom: "conv6" | |
top: "conv6" | |
} | |
layer { | |
name: "conv7/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv6" | |
top: "conv7/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv7/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv7/dw" | |
top: "conv7/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv7/dw/scale" | |
type: "Scale" | |
bottom: "conv7/dw" | |
top: "conv7/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv7/dw/relu" | |
type: "ReLU" | |
bottom: "conv7/dw" | |
top: "conv7/dw" | |
} | |
layer { | |
name: "conv7" | |
type: "Convolution" | |
bottom: "conv7/dw" | |
top: "conv7" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv7/bn" | |
type: "BatchNorm" | |
bottom: "conv7" | |
top: "conv7" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv7/scale" | |
type: "Scale" | |
bottom: "conv7" | |
top: "conv7" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv7/relu" | |
type: "ReLU" | |
bottom: "conv7" | |
top: "conv7" | |
} | |
layer { | |
name: "conv8/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv7" | |
top: "conv8/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv8/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv8/dw" | |
top: "conv8/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv8/dw/scale" | |
type: "Scale" | |
bottom: "conv8/dw" | |
top: "conv8/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv8/dw/relu" | |
type: "ReLU" | |
bottom: "conv8/dw" | |
top: "conv8/dw" | |
} | |
layer { | |
name: "conv8" | |
type: "Convolution" | |
bottom: "conv8/dw" | |
top: "conv8" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv8/bn" | |
type: "BatchNorm" | |
bottom: "conv8" | |
top: "conv8" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv8/scale" | |
type: "Scale" | |
bottom: "conv8" | |
top: "conv8" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv8/relu" | |
type: "ReLU" | |
bottom: "conv8" | |
top: "conv8" | |
} | |
layer { | |
name: "conv9/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv8" | |
top: "conv9/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv9/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv9/dw" | |
top: "conv9/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv9/dw/scale" | |
type: "Scale" | |
bottom: "conv9/dw" | |
top: "conv9/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv9/dw/relu" | |
type: "ReLU" | |
bottom: "conv9/dw" | |
top: "conv9/dw" | |
} | |
layer { | |
name: "conv9" | |
type: "Convolution" | |
bottom: "conv9/dw" | |
top: "conv9" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv9/bn" | |
type: "BatchNorm" | |
bottom: "conv9" | |
top: "conv9" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv9/scale" | |
type: "Scale" | |
bottom: "conv9" | |
top: "conv9" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv9/relu" | |
type: "ReLU" | |
bottom: "conv9" | |
top: "conv9" | |
} | |
layer { | |
name: "conv10/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv9" | |
top: "conv10/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv10/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv10/dw" | |
top: "conv10/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv10/dw/scale" | |
type: "Scale" | |
bottom: "conv10/dw" | |
top: "conv10/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv10/dw/relu" | |
type: "ReLU" | |
bottom: "conv10/dw" | |
top: "conv10/dw" | |
} | |
layer { | |
name: "conv10" | |
type: "Convolution" | |
bottom: "conv10/dw" | |
top: "conv10" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv10/bn" | |
type: "BatchNorm" | |
bottom: "conv10" | |
top: "conv10" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv10/scale" | |
type: "Scale" | |
bottom: "conv10" | |
top: "conv10" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv10/relu" | |
type: "ReLU" | |
bottom: "conv10" | |
top: "conv10" | |
} | |
layer { | |
name: "conv11/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv10" | |
top: "conv11/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv11/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv11/dw" | |
top: "conv11/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv11/dw/scale" | |
type: "Scale" | |
bottom: "conv11/dw" | |
top: "conv11/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv11/dw/relu" | |
type: "ReLU" | |
bottom: "conv11/dw" | |
top: "conv11/dw" | |
} | |
layer { | |
name: "conv11" | |
type: "Convolution" | |
bottom: "conv11/dw" | |
top: "conv11" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv11/bn" | |
type: "BatchNorm" | |
bottom: "conv11" | |
top: "conv11" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv11/scale" | |
type: "Scale" | |
bottom: "conv11" | |
top: "conv11" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv11/relu" | |
type: "ReLU" | |
bottom: "conv11" | |
top: "conv11" | |
} | |
layer { | |
name: "conv12/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv11" | |
top: "conv12/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
group: 512 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv12/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv12/dw" | |
top: "conv12/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv12/dw/scale" | |
type: "Scale" | |
bottom: "conv12/dw" | |
top: "conv12/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv12/dw/relu" | |
type: "ReLU" | |
bottom: "conv12/dw" | |
top: "conv12/dw" | |
} | |
layer { | |
name: "conv12" | |
type: "Convolution" | |
bottom: "conv12/dw" | |
top: "conv12" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 1024 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv12/bn" | |
type: "BatchNorm" | |
bottom: "conv12" | |
top: "conv12" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv12/scale" | |
type: "Scale" | |
bottom: "conv12" | |
top: "conv12" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv12/relu" | |
type: "ReLU" | |
bottom: "conv12" | |
top: "conv12" | |
} | |
layer { | |
name: "conv13/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv12" | |
top: "conv13/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 1024 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 1024 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv13/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv13/dw" | |
top: "conv13/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv13/dw/scale" | |
type: "Scale" | |
bottom: "conv13/dw" | |
top: "conv13/dw" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv13/dw/relu" | |
type: "ReLU" | |
bottom: "conv13/dw" | |
top: "conv13/dw" | |
} | |
layer { | |
name: "conv13" | |
type: "Convolution" | |
bottom: "conv13/dw" | |
top: "conv13" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.1 | |
} | |
convolution_param { | |
num_output: 1024 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv13/bn" | |
type: "BatchNorm" | |
bottom: "conv13" | |
top: "conv13" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv13/scale" | |
type: "Scale" | |
bottom: "conv13" | |
top: "conv13" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv13/relu" | |
type: "ReLU" | |
bottom: "conv13" | |
top: "conv13" | |
} | |
layer { | |
name: "conv15/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv13" | |
top: "conv15/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 1024 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv15/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv15/dw" | |
top: "conv15/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv15/dw/scale" | |
type: "Scale" | |
bottom: "conv15/dw" | |
top: "conv15/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv15/dw/relu" | |
type: "ReLU" | |
bottom: "conv15/dw" | |
top: "conv15/dw" | |
} | |
layer { | |
name: "conv15" | |
type: "Convolution" | |
bottom: "conv15/dw" | |
top: "conv15" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv15/bn" | |
type: "BatchNorm" | |
bottom: "conv15" | |
top: "conv15" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv15/scale" | |
type: "Scale" | |
bottom: "conv15" | |
top: "conv15" | |
param { | |
lr_mult: 1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv15/relu" | |
type: "ReLU" | |
bottom: "conv15" | |
top: "conv15" | |
} | |
layer { | |
name: "upsample" | |
type: "Deconvolution" | |
bottom: "conv15" | |
top: "upsample" | |
param { lr_mult: 0 decay_mult: 0 } | |
convolution_param { | |
num_output: 512 | |
group: 512 | |
kernel_size: 1 stride: 2 pad: 0 | |
weight_filler: { | |
type: "constant" | |
value : 1 | |
} | |
bias_term: false | |
} | |
} | |
layer { | |
name: "maxpool" | |
top: "maxpool" | |
bottom: "upsample" | |
type: "Pooling" | |
pooling_param { | |
kernel_size: 2 | |
stride: 1 | |
pool: MAX | |
pad: 1 | |
} | |
} | |
layer { | |
name: "conv17/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv11" | |
top: "conv17/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv17/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv17/dw" | |
top: "conv17/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv17/dw/scale" | |
type: "Scale" | |
bottom: "conv17/dw" | |
top: "conv17/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv17/dw/relu" | |
type: "ReLU" | |
bottom: "conv17/dw" | |
top: "conv17/dw" | |
} | |
layer { | |
name: "conv17" | |
type: "Convolution" | |
bottom: "conv17/dw" | |
top: "conv17" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv17/bn" | |
type: "BatchNorm" | |
bottom: "conv17" | |
top: "conv17" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv17/scale" | |
type: "Scale" | |
bottom: "conv17" | |
top: "conv17" | |
param { | |
lr_mult: 1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv17/relu" | |
type: "ReLU" | |
bottom: "conv17" | |
top: "conv17" | |
} | |
layer { | |
name: "conv17/sum" | |
type: "Eltwise" | |
bottom: "maxpool" | |
bottom: "conv17" | |
top: "conv17/sum" | |
} | |
layer { | |
name: "conv18/dw" | |
type: "DepthwiseConvolution" | |
bottom: "conv17/sum" | |
top: "conv18/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv18/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv18/dw" | |
top: "conv18/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv18/dw/scale" | |
type: "Scale" | |
bottom: "conv18/dw" | |
top: "conv18/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv18/dw/relu" | |
type: "ReLU" | |
bottom: "conv18/dw" | |
top: "conv18/dw" | |
} | |
layer { | |
name: "conv18_new" | |
type: "Convolution" | |
bottom: "conv18/dw" | |
top: "conv18_new" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv18_new/bn" | |
type: "BatchNorm" | |
bottom: "conv18_new" | |
top: "conv18_new" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "conv18_new/scale" | |
type: "Scale" | |
bottom: "conv18_new" | |
top: "conv18_new" | |
param { | |
lr_mult: 1 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0.0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv18_new/relu" | |
type: "ReLU" | |
bottom: "conv18_new" | |
top: "conv18_new" | |
} | |
layer { | |
name: "conv22" | |
type: "Convolution" | |
bottom: "conv15" | |
top: "conv22" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 255 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "conv23_new" | |
type: "Convolution" | |
bottom: "conv18_new" | |
top: "conv23_new" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 255 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "Yolov3Loss1" | |
type: "Yolov3" | |
bottom: "conv22" | |
bottom: "label" | |
top: "det_loss1" | |
loss_weight: 1 | |
yolov3_param { | |
side: 13 | |
num_class: 80 | |
num: 3 | |
object_scale: 5.0 | |
noobject_scale: 1.0 | |
class_scale: 1.0 | |
coord_scale: 1.0 | |
thresh: 0.7 | |
anchors_scale : 32 | |
#use_hard_sigmoid: True | |
#10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 | |
biases: 10 | |
biases: 14 | |
biases: 23 | |
biases: 27 | |
biases: 37 | |
biases: 58 | |
biases: 81 | |
biases: 82 | |
biases: 135 | |
biases: 169 | |
biases: 344 | |
biases: 319 | |
mask:3 | |
mask:4 | |
mask:5 | |
} | |
} | |
layer { | |
name: "Yolov3Loss2" | |
type: "Yolov3" | |
bottom: "conv23_new" | |
bottom: "label" | |
top: "det_loss2" | |
loss_weight: 1 | |
yolov3_param { | |
side: 26 | |
num_class: 80 | |
num: 3 | |
object_scale: 5.0 | |
noobject_scale: 1.0 | |
class_scale: 1.0 | |
coord_scale: 1.0 | |
thresh: 0.6 | |
anchors_scale : 16 | |
#use_hard_sigmoid: True | |
#10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 | |
biases: 10 | |
biases: 14 | |
biases: 23 | |
biases: 27 | |
biases: 37 | |
biases: 58 | |
biases: 81 | |
biases: 82 | |
biases: 135 | |
biases: 169 | |
biases: 344 | |
biases: 319 | |
mask:0 | |
mask:1 | |
mask:2 | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment