-
-
Save ericyue/e694a90338b9fadf9996025719005c9d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def main(): | |
# Read TFRecords files for training | |
def read_and_decode(filename_queue): | |
reader = tf.TFRecordReader() | |
_, serialized_example = reader.read(filename_queue) | |
return serialized_example | |
# Read TFRecords files for training | |
filename_queue = tf.train.string_input_producer( | |
tf.train.match_filenames_once(FLAGS.train_tfrecords_file), | |
num_epochs=EPOCH_NUMBER) | |
serialized_example = read_and_decode(filename_queue) | |
batch_serialized_example = tf.train.shuffle_batch( | |
[serialized_example], | |
batch_size=FLAGS.batch_size, | |
num_threads=BATCH_THREAD_NUMBER, | |
capacity=BATCH_CAPACITY, | |
min_after_dequeue=MIN_AFTER_DEQUEUE) | |
features = tf.parse_example(batch_serialized_example, | |
features={ | |
"label": tf.FixedLenFeature([], tf.float32), | |
"ids": tf.VarLenFeature(tf.int64), | |
"values": tf.VarLenFeature(tf.float32), | |
}) | |
batch_labels = features["label"] | |
batch_ids = features["ids"] | |
batch_values = features["values"] | |
# Create session to run | |
with tf.Session() as sess: | |
logging.info("Start to run with mode: {}".format(MODE)) | |
writer = tf.summary.FileWriter(OUTPUT_PATH, sess.graph) | |
sess.run(tf.global_variables_initializer()) | |
sess.run(tf.local_variables_initializer()) | |
if MODE == "train": | |
# Restore session and start queue runner | |
restore_session_from_checkpoint(sess, saver, LATEST_CHECKPOINT) | |
coord = tf.train.Coordinator() | |
threads = tf.train.start_queue_runners(coord=coord, sess=sess) | |
start_time = datetime.datetime.now() | |
try: | |
while not coord.should_stop(): | |
_, loss_value, step = sess.run([train_op, loss, global_step]) | |
except tf.errors.OutOfRangeError: | |
# Export the model after training | |
export_model(sess, saver, model_signature, FLAGS.model_path, | |
FLAGS.model_version) | |
finally: | |
coord.request_stop() | |
coord.join(threads) | |
def restore_session_from_checkpoint(sess, saver, checkpoint): | |
if checkpoint: | |
logging.info("Restore session from checkpoint: {}".format(checkpoint)) | |
saver.restore(sess, checkpoint) | |
return True | |
else: | |
return False |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment