-
-
Save ethan-funny/380053b17d391a362786a16221f18b31 to your computer and use it in GitHub Desktop.
Distributed Tensorflow Overhead Measurement Benchmark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import sys | |
import os | |
import argparse | |
import numpy as np | |
import time | |
import tensorflow as tf | |
# single node cluster spec params | |
host="127.0.0.1:" | |
ps_port="8888" | |
worker_port="8889" | |
def main(): | |
NUM_FEATURES = int(FLAGS.num_features) | |
HIDDEN_SIZE = int(FLAGS.num_hidden) | |
BATCH_SIZE = int(FLAGS.batch_size) | |
job_name = FLAGS.job_name | |
task_index = 0 | |
cluster = tf.train.ClusterSpec({'ps': [host+ps_port], 'worker': [host+worker_port]}) | |
server = tf.train.Server(cluster, job_name=job_name, task_index=task_index) | |
# we can also set config proto here to control parallelism | |
if job_name == 'ps': | |
server.join() | |
elif job_name == 'worker': | |
with tf.device(tf.train.replica_device_setter(worker_device='/job:worker/task:%d/cpu:0' % task_index, cluster=cluster)): | |
# this gets stored on parameter server | |
W0 = tf.get_variable("W0", | |
initializer= tf.truncated_normal([NUM_FEATURES, HIDDEN_SIZE], | |
dtype=tf.float32), dtype=tf.float32) | |
with tf.device("/job:worker/task:%d/cpu:0" % task_index): | |
W0_local = tf.get_variable("W0_local", | |
initializer= tf.truncated_normal([NUM_FEATURES, HIDDEN_SIZE], | |
dtype=tf.float32), dtype=tf.float32) | |
x_plhr = tf.placeholder(dtype=tf.float32, shape=[BATCH_SIZE, NUM_FEATURES]) | |
global_matmul = tf.matmul(x_plhr, W0) | |
local_matmul = tf.matmul(x_plhr, W0_local) | |
init = tf.global_variables_initializer() | |
with tf.Session(server.target) as sess: | |
sess.run(init) | |
A_matrix = np.random.randn(BATCH_SIZE, NUM_FEATURES) | |
start_global = time.time() | |
for i in range(1000): | |
sess.run([global_matmul.op], feed_dict = {x_plhr: A_matrix}) | |
end_global = time.time() | |
start_local = time.time() | |
for i in range(1000): | |
sess.run([local_matmul.op], feed_dict = {x_plhr: A_matrix}) | |
end_local = time.time() | |
print("Time for Local GEMM:", (end_local-start_local)/1000, | |
"Time for Remote GEMM:", (end_global-start_global)/1000) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.register("type", "bool", lambda v: v.lower() == "true") | |
parser.add_argument( | |
"--num_features", | |
type=str, | |
default="", | |
help="Comma-separated list of hostname:port pairs" | |
) | |
parser.add_argument( | |
"--num_hidden", | |
type=str, | |
default="", | |
help="Comma-separated list of hostname:port pairs" | |
) | |
parser.add_argument( | |
"--batch_size", | |
type=str, | |
default="", | |
help="Comma-separated list of hostname:port pairs" | |
) | |
parser.add_argument( | |
"--job_name", | |
type=str, | |
default="", | |
help="Comma-separated list of hostname:port pairs" | |
) | |
FLAGS, _ = parser.parse_known_args() | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment