-
-
Save euxoa/b39c7b61a53ecb150c0c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(dplyr) | |
# install.packages("rgeos", type="source") | |
# install.packages("rgbif", type="source") | |
# library(rgbif) | |
# d <- occ_search(orderKey=797, datasetKey="a8d08280-1def-11de-be11-b8a03c50a862", year="2013", limit=2000) | |
library(RJSONIO) | |
gen.template <- "http://hyonteiset.luomus.fi/insects/json?op=%s&order=Lep&%s" | |
kuhmo.url <- sprintf(gen.template, "search", "&county=Kuhmo&startYear=2013&endYear=2013&select=all") | |
jsobj <- readLines(kuhmo.url) | |
Encoding(jsobj) <- "latin1" | |
d.orig <- plyr::ldply(fromJSON(jsobj), identity) %>% | |
filter(grepl("[0-9]+ ?W|valorysä|valo", method) & grepl("Tähtinen|Saarenmaa", observer)) %>% | |
filter(family %in% c("Lasiocampidae", "Sphingidae", "Drepanidae", "Geometridae", | |
"Notodontidae", "Lymantriidae", "Nolidae", "Arctiidae", "Noctuidae")) %>% | |
mutate(name=paste(genus, species, sep=" "), count=as.integer(totalCount)) | |
d <- d.orig %>% | |
select(name, count) %>% | |
group_by(name) %>% | |
summarise(count=sum(count)) | |
nrow(d); sum(d$count) | |
plot(log(-sort(-d$count))) | |
m.ls <- sads::fitsad(d$count, "ls") | |
m.ls | |
sqrt(m.ls@vcov[1, 1]) # approximate posterior sd of alpha | |
m.lp <- sads::fitsad(d$count, "poilog"); sads::ppsad(m.lp) | |
plot(log(-sort(-d$count))); lines(log(sads::radpred(m.lp)$abund), col="red") | |
# Expected total number of species from the log-poison model | |
n.sample <- 10000 | |
p.missing <- sum(dpois(0, lambda=rlnorm(n.sample, m.lp@coef[1], m.lp@coef[2])))/n.sample | |
n.spec <- nrow(d)/(1-p.missing) | |
# Again, the posterior | |
par.sample <- MASS::mvrnorm(n=10000, m.lp@coef, m.lp@vcov) | |
p.missing <- apply(par.sample, 1, function (pars) {mean(dpois(0, rlnorm(1000, pars[1], pars[2])))}) | |
n.spec <- nrow(d)/(1-p.missing) | |
hist(n.spec, n=100) | |
# Uncertainties are high and the estimates are strongly correlated | |
vc <- m.lp@vcov; m.lp@coef; sqrt(diag(vc)); (vc/sqrt(outer(diag(vc), diag(vc))))[1, 2] | |
pred <- | |
data.frame(n.speciments=1:10, | |
real.count=table(d$count)[1:10], | |
pred.ls=nrow(d)*sads::dls(1:10, sum(d$count), m.ls@coef), | |
pred.lp=table(sads::radpred(m.lp)$abund)[1:10]) | |
1-ppois(pred$real.count, pred$pred.ls) | |
# Per yday there's too little data to get proper estimates for theta or alpha. | |
# (Also the gaussian approximation for the posterior breaks up.) | |
d2 <- d.orig %>% | |
select(name, count, startDay, startMonth) %>% | |
mutate(yday=30*as.integer(startMonth)+as.integer(startDay)) %>% | |
group_by(yday, name) %>% | |
summarise(count=sum(count)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment