Created
August 10, 2020 15:38
-
-
Save evd0kim/e28c04ef3f12c7ace0c310d83e530c85 to your computer and use it in GitHub Desktop.
Coinflips
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
reused code from https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers | |
""" | |
import numpy as np | |
from matplotlib import pyplot as plt | |
import scipy.stats as stats | |
dist = stats.beta | |
n_trials = [0, 1, 2, 3, 4, 5, 10, 15, 20, 24] | |
data = np.array([0, 1, 0, 0, 0, | |
0, 0, 0, 0, 0, | |
0, 1, 0, 1, 1, | |
0, 0, 1, 0, 0, | |
1, 1, 1, 1, 0, | |
0, 1, 1, 0, 1, | |
1, 1, 1, 1, 0, | |
1, 1, 0, 1, 0, | |
1, 0, 1, 0, 0, | |
1, 1, 1, 0, 1, | |
0, 1, 1, 0, 1, | |
1], | |
dtype=int) | |
n_trials[-1] = len(data) | |
data_1 = stats.bernoulli.rvs(0.5, size=n_trials[-1]) | |
data_2 = stats.bernoulli.rvs(0.5, size=n_trials[-1]) | |
print(data) | |
print(type(data)) | |
x = np.linspace(0, 1, 100) | |
# For the already prepared, I'm using Binomial's conj. prior. | |
for k, N in enumerate(n_trials): | |
sx = plt.subplot(len(n_trials)/2, 2, k+1) | |
plt.xlabel("$p$, probability of heads") \ | |
if k in [0, len(n_trials)-1] else None | |
plt.setp(sx.get_yticklabels(), visible=False) | |
heads = data[:N].sum() | |
heads_1 = data_1[:N].sum() | |
heads_2 = data_2[:N].sum() | |
y = dist.pdf(x, 1 + heads, 1 + N - heads) | |
y_1 = dist.pdf(x, 1 + heads_1, 1 + N - heads_1) | |
y_2 = dist.pdf(x, 1 + heads_2, 1 + N - heads_2) | |
plt.plot(x, y, label="observe %d tosses,\n %d heads" % (N, heads)) | |
plt.plot(x, y_1, label="conrol g1 %d tosses,\n %d heads" % (N, heads_1)) | |
plt.plot(x, y_2, label="control g2 %d tosses,\n %d heads" % (N, heads_2)) | |
plt.fill_between(x, 0, y, color="#348ABD", alpha=0.2) | |
plt.fill_between(x, 0, y_1, color="#ffccff", alpha=0.4) | |
plt.fill_between(x, 0, y_1, color="#ccffcc", alpha=0.4) | |
plt.vlines(0.5, 0, 4, color="k", linestyles="--", lw=1) | |
leg = plt.legend() | |
leg.get_frame().set_alpha(0.4) | |
plt.autoscale(tight=True) | |
plt.suptitle("Bayesian updating of posterior probabilities", | |
y=1.02, | |
fontsize=14) | |
plt.tight_layout() | |
plt.show() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
reused code from https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers | |
""" | |
import numpy as np | |
from matplotlib import pyplot as plt | |
import scipy.stats as stats | |
dist = stats.beta | |
n_trials = [6, 8, 10, 20, 30, 35] | |
data = np.array([0, 0, 0, 1, 1, 0, 0, 0, 0, 1, | |
0, 1, 0, 1, 0, 1, 0, 0, 1, 1, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, | |
0, 0, 1, 0, 0, 0, 0, 0, 1, 1, | |
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, | |
0, 0, 1, 1, 0, 0, 0, 1, 0, 0, | |
0, 1, 0, 0, 0, 1, 0, 1, 0, 0, | |
1, 0, 0, 0, 0, 0, 1], | |
dtype=int) | |
n_trials[-1] = len(data) | |
data_1 = stats.bernoulli.rvs(1.0/3, size=n_trials[-1]) | |
data_2 = stats.bernoulli.rvs(1.0/3, size=n_trials[-1]) | |
print(data) | |
print(type(data)) | |
x = np.linspace(0, 1, 100) | |
# For the already prepared, I'm using Binomial's conj. prior. | |
for k, N in enumerate(n_trials): | |
sx = plt.subplot(len(n_trials)/2, 2, k+1) | |
plt.xlabel("$p$, probability of heads") \ | |
if k in [0, len(n_trials)-1] else None | |
plt.setp(sx.get_yticklabels(), visible=False) | |
heads = data[:N].sum() | |
heads_1 = data_1[:N].sum() | |
heads_2 = data_2[:N].sum() | |
y = dist.pdf(x, 1 + heads, 1 + N - heads) | |
y_1 = dist.pdf(x, 1 + heads_1, 1 + N - heads_1) | |
y_2 = dist.pdf(x, 1 + heads_2, 1 + N - heads_2) | |
plt.plot(x, y, label="observe %d tosses,\n %d heads" % (N, heads)) | |
plt.plot(x, y_1, label="conrol g1 %d tosses,\n %d heads" % (N, heads_1)) | |
plt.plot(x, y_2, label="control g2 %d tosses,\n %d heads" % (N, heads_2)) | |
plt.fill_between(x, 0, y, color="#348ABD", alpha=0.2) | |
plt.fill_between(x, 0, y_1, color="#ffccff", alpha=0.4) | |
plt.fill_between(x, 0, y_1, color="#ccffcc", alpha=0.4) | |
plt.vlines(0.3, 0, 4, color="k", linestyles="--", lw=1) | |
leg = plt.legend() | |
leg.get_frame().set_alpha(0.4) | |
plt.autoscale(tight=True) | |
plt.suptitle("Bayesian updating of posterior probabilities", | |
y=1.02, | |
fontsize=14) | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment